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Abstract 

This report describes the determination of the inertia tensor of a ballasted ship model in the towing tank. 
The theoretical background is based on the principle of a physical pendulum: the oscillation period is 
proportional with the moment of inertia about the oscillation axis. The governing formulae are determined, 
including the uncertainty on each term. The practical application is tested with a generic profile. A working 
example is provided for the benchmark container ship KCS. 

This report is basically a translation of (Delefortrie et al., 2012), updated with a blind benchmark test and 
applied to a known ship model. 
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1. Motivation 

Tello Ruiz et al., 2016 mentioned the peculiar fact of a constant offset between the moment of inertia 
about the ship’s longitudinal axis as measured on the towing tank and the value given by the numerical 
package Hydrostar. Therefore the pendulum theory has been completely checked. This was performed by 
the derivation of the moments of inertia of a generic profile, with known inertia tensor, but initially 
unknown to the staff of the towing tank. 

At the same time the previous report (Delefortrie et al., 2012) was translated to English and the benchmark 
vessel KCS is now used as example. 
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2. Ship behaviour in 6 DOF 

The following set of equations expresses Newton’s second law in the axis system presented in Figure 1. 

 𝑋 = 𝑚[�̇� − 𝑣𝑣 + 𝑤𝑤 − 𝑥𝐺(𝑤2 + 𝑣2) + 𝑦𝐺(−�̇� + 𝑝𝑤) + 𝑧𝐺(�̇� + 𝑝𝑣)] (1) 

 𝑌 = 𝑚[�̇� + 𝑢𝑣 − 𝑤𝑝 + 𝑥𝐺(�̇� + 𝑝𝑤) − 𝑦𝐺(𝑝² + 𝑣²) + 𝑧𝐺(−�̇� + 𝑤𝑣)] (2) 

 𝑍 = 𝑚[�̇� + 𝑢𝑤 − 𝑣𝑝 + 𝑥𝐺(−�̇� + 𝑝𝑣) + 𝑦𝐺(�̇� + 𝑤𝑣)− 𝑧𝐺(𝑝² + 𝑤²)] (3) 

 𝐾 = �𝐼𝑥𝑥�̇� − 𝐼𝑥𝑥�̇� − 𝐼𝑥𝑥�̇�� + �𝐼𝑥𝑥𝑣 − 𝐼𝑥𝑥𝑤�𝑝 + �𝐼𝑥𝑥 − 𝐼𝑥𝑥�𝑤𝑣 + 𝐼𝑥𝑥(𝑣2 − 𝑤2) + 

 𝑚[(�̇� + 𝑣𝑝 − 𝑢𝑤)𝑦𝐺 − (�̇� + 𝑢𝑣 − 𝑤𝑝)𝑧𝐺] (4) 

 𝑀 = �−𝐼𝑥𝑥�̇� + 𝐼𝑥𝑥�̇� − 𝐼𝑥𝑥�̇�� + �𝐼𝑥𝑥𝑝 − 𝐼𝑥𝑥𝑣�𝑤 + (𝐼𝑥𝑥 − 𝐼𝑥𝑥)𝑝𝑣 + 𝐼𝑥𝑥(𝑝² − 𝑣²) + 

 𝑚[−(�̇� + 𝑣𝑝 − 𝑢𝑤)𝑥𝐺 + (�̇� − 𝑣𝑣 + 𝑤𝑤)𝑧𝐺] (5) 

 𝑁 = �−𝐼𝑥𝑥�̇� − 𝐼𝑥𝑥�̇� + 𝐼𝑥𝑥�̇�� + �𝐼𝑥𝑥𝑤 − 𝐼𝑥𝑥𝑝�𝑣 + �𝐼𝑥𝑥 − 𝐼𝑥𝑥�𝑝𝑤 + 𝐼𝑥𝑥(𝑤² − 𝑝²)+ 

 𝑚[(�̇� + 𝑢𝑣 − 𝑤𝑝)𝑥𝐺 − (�̇� − 𝑣𝑣 + 𝑤𝑤)𝑦𝐺] (6) 

Figure 1 - Ship and earth fixed coordinate systems in 6 degrees of freedom 

 

projections on the 𝑥0𝑦0-plane, 𝑦0𝑧0-plane and 𝑧0𝑥0-plane. 

 

During a captive model tests, the forces X, Y, (Z) and the moments K, (M), N are continuously measured. To 
be able to predict the external forces correctly, 

• the ship’s mass 𝑚; 
• the ship’s centre of gravity 𝒓𝑮; 
• the inertial tensor about the origin 𝑰𝟎: 

 𝑰𝟎 = �
𝐼𝑥𝑥 −𝐼𝑥𝑥 −𝐼𝑥𝑥
−𝐼𝑥𝑥 𝐼𝑥𝑥 −𝐼𝑥𝑥
−𝐼𝑥𝑥 −𝐼𝑥𝑥 𝐼𝑥𝑥

� (7) 

have to be known. The inertial components are determined based on the principle of the physical 
pendulum.  
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3. Theoretical background 

3.1. Principle 

The oscillation period 𝑇 of a physical pendulum is determined by: 

 𝑇 = 2𝜋� 𝐼0
𝑚𝑚𝑙𝑠

 (8) 

The parameters in this equation are: 

• 𝐼0: moment of inertia about the oscillation axis [kgm²]; 
• 𝑚: pendulum’s mass [kg]; 
• 𝑔: gravity acceleration [m/s²]; 
• 𝑙𝑠: distance between the pendulum’s centre of gravity and the oscillation axis [m]. 

If the oscillation period is known, the moment of inertia can be expressed as: 

 𝐼0 = 𝑇²
4𝜋²

𝑚𝑔𝑙𝑠 (9) 

Application of the parallel axis theorem (Huygens-Steiner theorem) yields the moment of inertia about a 
parallel axis through the centre of gravity: 

 𝐼𝐺 = 𝑇²
4𝜋²

𝑚𝑔𝑙𝑠 − 𝑚𝑙𝑠2 (10) 

The unknown parameters in this equation are: 

• the oscillation period 𝑇; 
• the mass 𝑚; 
• the position of the centre of gravity 𝑙𝑠. 

These parameters can be determined both for an empty and a ballasted pendulum (with and without ship 
model). 

3.2. Determination of the mass 

The mass can be determined by simply weighing the ship model and the pendulum. The measurement 
accuracy on the towing tank is 0.2 kg. Some components can be measured with a better accuracy, but in a 
conservative approach an accuracy of 0.2 kg will be maintained. 

3.3. Determination of the pendulum’s centre of gravity 

3.3.1. Value 

A right handed pendulum axis system is introduced, having its origin in the oscillation point. The 𝑧-axis is 
positive downwards. The 𝑥-axis lies in the longitudinal symmetry plane and the 𝑦-axis in the lateral 
symmetry plane. The oscillation axis can be either the 𝑥-axis or the 𝑦-axis, depending on the position of the 
pendulum. 

An additional mass 𝑚𝐵𝐺 is eccentrically put on the pendulum with its centre of gravity at position (𝑦𝐵𝐺 , 
𝑙𝐵𝐺 = 𝑧𝐵𝐺) referred to the oscillation axis, see Figure 2. The pendulum will move towards a new equilibrium 
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position determined by a measurable angle 𝛽. This equilibrium position follows from the moment 
equilibrium 

 𝑎𝑆𝐺𝑠 = 𝑎𝐵𝐺𝐺𝐵𝐺 (11) 

Both the weight of the pendulum 𝐺𝑠 and of the additional mass 𝐺𝐵𝐺  are known values. The unknown levers 
𝑎𝑆 and 𝑎𝐵𝐺  can be expressed as a function of the angle 𝛽: 

 𝑎𝐵𝐺 = 𝑦𝐵𝐺 cos𝛽 − 𝑧𝐵𝐺 sin𝛽 (12) 

 𝑎𝑆 = 𝑙𝑠 sin𝛽 (13) 

Figure 2 – Ballasted pendulum 

 
The above equations yield the position of the centre of gravity: 

 𝑙𝑆 = 𝑎𝑠
sin𝛽

= 𝑎𝐵𝐵𝐺𝐵𝐵
𝐺𝑠 sin𝛽

= 𝑚𝐵𝐵
𝑚𝑠

� 𝑥𝐵𝐵
tan𝛽

− 𝑧𝐵𝐺� = 𝑧𝑆 (14) 

3.3.2. Accuracy 

The accuracy on the position of the centre of gravity depends on the accuracy of the contributing 
parameters in equation (14). The partial derivatives from this equation are: 

 𝜕𝑥𝑠
𝜕𝑚𝐵𝐵

=
𝑦𝐵𝐵
tan𝛽−𝑥𝐵𝐵

𝑚𝑠
 (15) 

 𝜕𝑥𝑠
𝜕𝑚𝑠

= −𝑚𝐵𝐵
𝑚𝑠
2 �

𝑥𝐵𝐵
tan𝛽

− 𝑧𝐵𝐺� (16) 

 𝜕𝑥𝑠
𝜕𝑥𝐵𝐵

= 𝑚𝐵𝐵
𝑚𝑠 tan𝛽

 (17) 

 𝜕𝑥𝑠
𝜕𝛽

= − 𝑚𝐵𝐵𝑥𝐵𝐵
𝑚𝑠 sin²𝛽

 (18) 

 𝜕𝑥𝑠
𝜕𝑥𝐵𝐵

= −𝑚𝐵𝐵
𝑚𝑠

 (19) 

The accuracy can be improved by increasing the angle 𝛽, due to the presence of sin²𝛽 in the denominator 
of equation (18). 
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3.4. Determination of the oscillation period 

The oscillation period 𝑇 is determined by slightly swinging the pendulum (without additional weights). The 
following can adversely affect the outcome: 

• A too large oscillation amplitude will cause a significant damping and hence an unreliable oscillation 
period; 

• A too small oscillation amplitude will complicate the measurement of the oscillation period. 
• Badly conditioned balancing edges will increase damping. 

The oscillation period should be determined both about its 𝑥-axis and 𝑦-axis. The pendulum is then 
referred to as X-pendulum and Y-pendulum. 

3.5. Determination of the pendulum’s moments of inertia 

The moments of inertia are given by equation (9) or: 

 𝐼𝑋𝑋 = 𝑇𝑋𝑋
2

4𝜋²
𝑚𝑠𝑔𝑧𝑠 = 𝑇𝑋𝑋

2

4𝜋²
𝑔𝑚𝐵𝐺 �

𝑥𝐵𝐵
tan𝛽

− 𝑧𝐵𝐺� (20) 

 𝐼𝑌𝑌 = 𝑇𝑌𝑌
2

4𝜋²
𝑚𝑠𝑔𝑧𝑠 = 𝑇𝑌𝑌

2

4𝜋²
 𝑔𝑚𝐵𝐺 �

𝑥𝐵𝐵
tan𝛽

− 𝑧𝐵𝐺� (21) 

It is sufficient to determine 𝐼𝑋𝑋 and 𝐼𝑌𝑌, because the pendulum has two perpendicular symmetry planes, 
which means that the products of inertia are zero. 

The partial derivatives are (neglecting 𝑧𝑠(𝑚𝑠)): 

 𝜕𝐼
𝜕𝑇

= 𝑇
2𝜋²

𝑚𝑠𝑔𝑧𝑠 (22) 

 𝜕𝐼
𝜕𝑚𝑠

= 𝑇²
4𝜋²

𝑔𝑧𝑠 (23) 

 𝜕𝐼
𝜕𝑥𝑠

= 𝑇²
4𝜋²

𝑔𝑚𝑠 (24) 

which emphasizes the importance of the accuracy of 𝑧𝑠, and consequently the angle 𝛽. 

3.6. Determination of the ship model’s centre of gravity 

In this section the centre of gravity of the ship model is determined prior to ballasting. The same method as 
in section 3.3 could be used, but a better accuracy is achieved using the equilibrium of the pendulum + ship 
system. The pendulum will have a deviation of 0° when the mass is equally distributed on both sides. It is 
sufficient to position the ship model in such way that the pendulum’ s deviation equals 0°: 

• 𝑥𝐺: put the ship model on the Y-pendulum. The 𝑦-axis of the ship model should be parallel to the 
axis of the pendulum and the pendulum’s deviation equals 0°. The distance between the midship 
section and the pendulum axis is then 𝑥𝐺; 

• 𝑦𝐺: in most cases equal to 0 m. Put the ship model on the X-pendulum. The 𝑥-axis of the ship model 
should be parallel to the axis of the pendulum and the pendulum’s deviation equals 0°. The 
distance between the longitudinal symmetry plane and the pendulum axis is then 𝑦𝐺 . For most ship 
models 𝑦𝐺  is equal to 0 m and small ballast is added to the ship if the port and starboard weight are 
different; 

• 𝑧𝐺: put the ship model on its side on the X-pendulum. The 𝑥-axis of the ship model should be 
parallel to the axis of the pendulum and the pendulum’s deviation equals 0°. The distance between 
the water plane and the pendulum axis is then 𝑧𝐺. 
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The accuracy of the position depends on the accuracy of the angle of the pendulum and the method to 
measure the distance. The latter is the most important and is expected to have an accuracy of 0.001 m. 

3.7. Determination of the ship model’s inertia 

3.7.1. Moments of inertia 

About the 𝒙- and 𝒚-axis 

The moments of inertia can be determined according to section 3.5. For the present case the equations are: 

 𝐼𝑋𝑋𝑇 = 𝑇𝑋𝑋𝑋
2

4𝜋²
𝑚𝛴𝑔𝑧𝛴  (25) 

 𝐼𝑌𝑌𝑇 = 𝑇𝑌𝑌𝑋
2

4𝜋²
𝑚𝛴𝑔𝑧𝛴 (26) 

The ship model has to be positioned on the pendulum so that the centre of gravity of both the ship model 
and the pendulum are on the same vertical. 

• 𝐼𝑋𝑋𝑇: the ship model is put on the X-pendulum with the 𝑥-axis of the ship parallel to the 
pendulum’s axis. 

• 𝐼𝑌𝑌𝑇: the ship model is put on the Y-pendulum with the 𝑦-axis of the ship parallel to the pendulum’s 
axis. 

In the above equations: 

• 𝑚𝛴: total mass of ship model and pendulum; 

• 𝑧𝛴: position of the centre of gravity of the ship and pendulum (below the swinging point): 

 𝑧𝛴 = 𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑚𝑠ℎ𝑖𝑝𝑥𝑠ℎ𝑖𝑝
𝑚𝛴

 (27) 

 
The moment of inertia of the ship about the pendulum’s axis is found by superposition: 

 𝐼𝑠𝑠ℎ𝑖𝑖 = 𝐼𝑇 − 𝐼𝑖𝑝𝑝𝑝𝑝𝑙𝑝𝑚 (28) 

With equation (10) the moment of inertia about any axis can be found. 

About the 𝒛-axis 

It is also possible to determine the moment of inertia about the 𝑧-axis. If the ship model is put on its side on 
the Y-pendulum (the so-called Z-pendulum), the ship model is swung about its 𝑧-axis. Equation (26) is still 
valid, but 𝑧𝑠ℎ𝑖𝑖 in (27) has to be interpreted as the position of 𝑦𝐺  with respect to the pendulum’s axis. As in 
most cases 𝑦𝐺  equals zero, this position is: 

 𝑑 − 𝐵
2

 (29) 

with d the height of the swinging point above the pendulum’s plane. 

3.7.2. Products of inertia 

The determination of the moment of inertia about the 𝑧-axis is a specific case of the generic formula for the 
moment about any axis 𝛥: 

𝐼∆ = 𝐼𝑥𝑥 cos²𝛼 + 𝐼𝑥𝑥 cos²𝛽 + 𝐼𝑥𝑥 cos²𝜃 − 2𝐼𝑥𝑥 cos𝛼 cos𝛽 − 2𝐼𝑥𝑥 cos𝛽 cos 𝜃 − 2𝐼𝑥𝑥 cos𝛼 cos 𝜃 (30) 
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In this equation: 

• 𝛼 represents the angle between the 𝑥-axis of the ship and 𝛥; 

• 𝛽 represents the angle between the 𝑦-axis of the ship and 𝛥; 

• 𝜃  represents the angle between the 𝑧-axis of the ship and 𝛥; 

In case the ship model is put on the X-pendulum with its x-axis parallel to the pendulum’s axis: 

• 𝛼 equals 0 or 180°; 

• 𝛽 equals -90 or 90°; 

• 𝜃 equals -90 or 90°; 

And equation(30) leads to: 

 𝐼∆ = 𝐼𝑥𝑥 (31) 

It is important to use the correct sign of the angles for the determination of the products of inertia. 
Delefortrie et al. (2009) explains how to determine the correct sign. The projection on the 𝑧0𝑥0-plane in 
Figure 1 can also be used as a top view of the ship on the Z-pendulum. 

For a conventional ship, both form and mass symmetry about the 𝑥𝑧-plane can be assumed, so that: 

 𝐼𝑥𝑥 ≈ 𝐼𝑥𝑥 ≈ 0 (32) 

Because the 𝑥𝑧-plane is the only symmetry plane, 𝐼𝑥𝑥 should be determined. Combining (30) and (32) 
yields: 

 𝐼∆ = 𝐼𝑥𝑥 cos²𝛼 + 𝐼𝑥𝑥 cos²𝛽 + 𝐼𝑥𝑥 cos²𝜃 − 2𝐼𝑥𝑥 cos𝛼 cos𝜃 (33) 

A solution for 𝐼𝑥𝑥 is found provided cos𝛼 cos𝜃 is different from zero. The value for cos²𝛽 can be freely 
chosen, for instance 0. This is the case when the ship is put on the Z-pendulum with an angle 𝛼 (between 
the 𝑥-axis of the ship and the pendulum axis) different from ±90°. In any case: 

 𝛼 = 𝜃 + 90 (34) 

Equation (33) can now be written as: 

 𝐼∆ = 𝐼𝑥𝑥 cos² �𝜃 + 𝜋
2
� + 𝐼𝑥𝑥 cos² 𝜃 − 2𝐼𝑥𝑥 cos �𝜃 + 𝜋

2
� cos𝜃 (35) 

resulting in: 

 𝐼𝑥𝑥 = 𝐼∆−𝐼𝑥𝑥 sin2 𝜃−𝐼𝑧𝑧 cos²𝜃
sin 2𝜃

 (36) 

3.7.3. In general 

Put the ship model on the pendulum in such way that the 𝛥-axis is parallel with the pendulum’s axis (𝛥-
pendulum). At rest the deviation of the pendulum should be equal to zero. 
The oscillation period 𝑇∆ during a slight swing is measured, yielding: 

 𝐼∆𝑇 = 𝑇∆𝑋
2

4𝜋²
𝑚𝛴𝑔𝑧𝛴  (37) 

𝑚𝛴𝑔𝑧𝛴  is determined with equation (27), in which 𝑧𝑠ℎ𝑖𝑖 represents the position of the centre of gravity of 
the ship below the swinging point. It is possible to use the set of equations (22) – (24), but both for the 
pendulum and the ship model. 
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Equation (28) gives then the moment of inertia of the ship without pendulum. 𝐼𝑖𝑝𝑝𝑝𝑝𝑙𝑝𝑚corresponds to 𝐼𝑋𝑋 
(𝑥-axis is the pendulum’s axis) or 𝐼𝑌𝑌 (𝑦-axis is the pendulum’s axis). The partial derivatives of these 
equations are: 

 
𝜕𝐼𝑠ℎ𝑖𝑝
𝜕𝐼𝑋

= 1 (38) 

 
𝜕𝐼𝑠ℎ𝑖𝑝

𝜕𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
= −1 (39) 

 
Steiner’s theorem allows to find the inertia about the axes through the centre of gravity: 

 𝐼𝐺 = 𝐼0 − 𝑚𝑠ℎ𝑖𝑖𝑧𝑠ℎ𝑖𝑖2  (40) 

with partial derivatives: 

 𝜕𝐼𝐵
𝜕𝑚𝑠ℎ𝑖𝑝

= −𝑧²𝑠ℎ𝑖𝑖 (41) 

 𝜕𝐼𝐵
𝜕𝑥𝑠ℎ𝑖𝑝

= −2𝑚𝑠ℎ𝑖𝑖 (42) 

In case of the product of inertia 𝐼𝑥𝑥, equation (36) has to be solved as well, with partial derivatives: 

 𝜕𝐼𝑋𝑋
𝜕𝐼∆

= 1
𝑠𝑖𝑝(2𝜃) (43) 

 𝜕𝐼𝑋𝑋
𝜕𝐼𝑋𝑋

= −1
2

tan𝜃 (44) 

 𝜕𝐼𝑋𝑋
𝜕𝐼𝑋𝑋

= −1
2
𝑐𝑐𝑐 𝜃 (45) 

 𝜕𝐼𝑋𝑋
𝜕𝜃

= −1
2
� 1
𝑠𝑖𝑝²𝜃

− 1
𝑠𝑐𝑠²𝜃

� 𝐼∆ −
1
2

1
𝑠𝑐𝑠2 𝜃

𝐼𝑋𝑋 + 1
2

1
𝑠𝑖𝑝²𝜃

𝐼𝑍𝑍 (46) 

The last equation is the most significant one, the angle 𝜃 should not be chosen too small. 

3.8. Adding ballast 

Once the position of the centre of gravity and the inertia tensor are known, ballast weights are added to 
the ship to achieve a certain loading condition. By adding ballast weights: 

• the resulting weight corresponds to the displacement of the ship at the loading condition; 

• the centre of gravity is on the same vertical as the centre of buoyancy of the loading condition; 

• the initial stability levers have their desired value; 

• the moments of inertia have realistic values, which are mostly expressed as a function of the 
dimensions and the ship’s mass. 

The ballast weights have their own inertia. Adding any weight changes: 

• the total mass, equation (47); 

• the position of the centre of gravity, equation (48); 

• the inertia tensor, equation (59). 
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3.9. Superposition and convoys 

The above reasoning is also applicable to convoys. Suppose a convoy is made of 𝑛 parts, each part 𝑖  with its 
own centre of gravity 𝑥𝐺𝑖, 𝑦𝐺𝑖  and 𝑧𝐺𝑖 in its own axis system, its mass 𝑚𝑖 and its inertia tensor 𝑰𝑮𝑮 about its 
centre of gravity. In this case: 

 𝑚 = ∑ 𝑚𝑖
𝑝
𝑖=0  (47) 

represents the total mass of the convoy and 

 𝑣𝐺 = ∑ 𝑚𝑖
𝑝
𝑖=0 𝑟𝐵𝑖

𝑚
 (48) 

the position of the centre of gravity of the convoy, with 𝑣𝐺𝑖 (r = x, y, z) the position of the centre of gravity 
expressed in the convoy axis system. 

Summation of the inertia of each convoy part is possible: 

 𝑰𝟎 = ∑ 𝑰𝟎𝑮𝑝
𝑖=0  (49) 

provided the inertia tensor of each part is expressed in the convoy axis system. This is achieved with 
Steiner’s theorem, possibly with previous rotations: 

• For the moments of inertia, for instance about the 𝑥-as, a translation from G(0,0,0) to O(𝑥,𝑦, 𝑧): 

 𝐼𝑋𝑋0 = 𝐼𝑋𝑋𝐺 + 𝑚(𝑦² + 𝑧²) (50) 

• For the products of inertia, for instance 𝐼𝑋𝑍, a translation from G(0,0,0) to O(𝑥,𝑦, 𝑧): 

 𝐼𝑋𝑍0 = 𝐼𝑋𝑍𝐺 + 𝑚𝑥𝑧 (51) 
A rotation may be needed when a barge is put backwards in a convoy. In this case: 

𝐼∆ = 𝐼′∆ = 𝐼′𝑥𝑥 cos2(𝛼 + 𝜋) + 𝐼′𝑥𝑥 cos2(𝛽 + 𝜋) + 𝐼′𝑥𝑥 cos2 𝜃 − 2𝐼′𝑥𝑥 cos(𝛼 + 𝜋) cos(𝛽 + 𝜋) −
2𝐼′𝑥𝑥 cos(𝛽 + 𝜋) cos𝜃 −2𝐼′𝑥𝑥 cos(𝛼 + 𝜋) cos𝜃  (52) 

which yields: 

𝐼∆ = 𝐼′∆ = 𝐼′𝑥𝑥 cos2 𝛼 + 𝐼′𝑥𝑥 cos2 𝛽 + 𝐼′𝑥𝑥 cos2 𝜃 −
2𝐼′𝑥𝑥 cos𝛼 cos𝛽 + 2𝐼′𝑥𝑥 cos𝛽 cos𝜃 + 2𝐼′𝑥𝑥 cos𝛼 cos𝜃 (53) 

Comparing (53) and (30) shows that in this case 𝐼𝑥𝑥 and 𝐼𝑥𝑥 need to swap sign. 
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4. Blind calibration with a generic profile 

4.1. Overview 

A generic profile (manufactured by Rose Krieger) with the characteristics mentioned in Table 1 was put on 
the medium size pendulum (January 3, 2017) to determine its moments of inertia. 

Table 1 – Characteristics of the generic profile 

Measured on towing tank: origin of the axis system in the middle of the volume. The centre of gravity 
corresponds with the origin of the axis system. 

Weight 111.72 kg 

Length 2.9995 m 

Width 0.320 m 

Depth 0.160 m 

Moments of inertia provided by manufacturer (disclosed after the measurements) 

𝐼𝑋𝑋 1.684 kgm² 

𝐼𝑌𝑌 84.141 kgm² 

𝐼𝑍𝑍 85.065 kgm² 

The characteristics of the medium size pendulum are (calibration of June 21, 2012): 

• 𝑚𝑖𝑝𝑝𝑝𝑝𝑙𝑝𝑚= 50.8 kg; 

• Equation (14): 𝑧𝑆 = 0.296 ± 0.004 𝑚; 

• Equation (20): 𝐼𝑋𝑋 = 17.8 ± 0.1 𝑘𝑔𝑚²; 

• Equation (21): 𝐼𝑌𝑌 = 19.3 ± 0.1 𝑘𝑔𝑚²; 

The distance between the base of the medium size pendulum and its swinging point is 0.875 m. 

4.2. Determination of the moment of inertia about 𝑥-axis 

The focus is put here on the moment of inertia about the 𝑥-axis, because its deviation was the main reason 
to perform the present calibration. The pendulum with the generic profile was slightly swung 10 times and 
the time for five oscillation periods was registered. 
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Table 2 – Measurement of the oscillation period of the medium size pendulum with generic profile 

Measurement 5𝑇      (s) 𝐼𝑋𝑋𝑇 (kgm²) (eq. 25) Measurement 5𝑇      (s) 𝐼𝑋𝑋𝑇 (kgm²) (eq. 25) 

1 9.47 92.574907 6 9.48 92.77052222 

2 9.48 92.770522 7 9.47 92.57490705 

3 9.48 92.770522 8 9.47 92.57490705 

4 9.48 92.770522 9 9.47 92.57490705 

5 9.48 92.770522 10 9.48 92.77052222 

To evaluate equation (25) the following values were used: 

• Position of the centre of gravity of the profile: 0.875− 0.16
2

= 0.795 𝑚; 
• Total mass: 50.8 + 111.72 = 162.52 kg. 

Of course, the result of equation (25) in Table 2 has too many significant digits. The partial derivatives are 
the extension of the set of equations (22)-(24): 

 𝑤1 = 𝜕𝐼
𝜕𝑇

= 𝑚𝑇
2𝜋²

�𝑚𝑠ℎ𝑖𝑖𝑧𝑠ℎ𝑖𝑖 + 𝑚𝑖𝑝𝑝𝑝𝑝𝑙𝑝𝑚𝑧𝑖𝑝𝑝𝑝𝑝𝑙𝑝𝑚� (54) 

 𝑤2 = 𝜕𝐼
𝜕𝑚𝑠ℎ𝑖𝑝

= 𝑚𝑇2

4𝜋²
𝑧𝑠ℎ𝑖𝑖 (55) 

 𝑤3 = 𝜕𝐼
𝜕𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝑚𝑇2

4𝜋²
𝑧𝑖𝑝𝑝𝑝𝑝𝑙𝑝𝑚 (56) 

 𝑤4 = 𝜕𝐼
𝜕𝑥𝑠ℎ𝑖𝑝

= 𝑚𝑇2

4𝜋²
𝑚𝑠ℎ𝑖𝑖 (57) 

 𝑤5 = 𝜕𝐼
𝜕𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝑚𝑇2

4𝜋²
𝑚𝑖𝑝𝑝𝑝𝑝𝑙𝑝𝑚 (58) 

The uncertainties mentioned Table 3 in are applicable on the single measurements. 

Table 3 – Uncertainties on each parameter 

Parameter Uncertainty Explanation 

𝜕𝑇 0.01 s Resolution chronometer 

𝜕𝑚𝑠ℎ𝑖𝑖 0.2 kg Resolution balance  

𝜕𝑚𝑖𝑝𝑝𝑝𝑝𝑙𝑝𝑚 0.2 kg (0.01 kg) Resolution bridge balance (resolution second balance) 

𝜕𝑧𝑠ℎ𝑖𝑖 0.0015 m (0.001 m) Resolution distance measurement 

𝜕𝑧𝑖𝑝𝑝𝑝𝑝𝑙𝑝𝑚 0.002 m  Half of the uncertainty of the calibration of June 21, 2012 
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The expanded uncertainty is then, for a single measurement: 

𝜕𝐼 = ��(𝑤1𝜕𝑇)2 + �𝑤2𝜕𝑚𝑠ℎ𝑖𝑖�
2 + �𝑤3𝜕𝑚𝑖𝑝𝑝𝑝𝑝𝑙𝑝𝑚�

2 + �𝑤4𝜕𝑧𝑠ℎ𝑖𝑖�
2 + �𝑤5𝜕𝑧𝑖𝑝𝑝𝑝𝑝𝑙𝑝𝑚�

2� (59) 

The weight 𝑤𝑖 of each oscillation period measurement 𝑖 is equal to: 

 𝑤𝑖 = � 1
𝜕𝐼𝑖
�
2

 (60) 

The average moment of inertia of the 10 measurements is: 

 𝐼 = ∑𝑤𝑖𝐼𝑖
𝑤𝑖

 (61) 

With corresponding uncertainty 

 𝜕𝐼 = 1
�∑𝑤𝑖

 (62) 

In this case: 

 𝐼𝑋𝑋𝑇 = 92.7 ± 0.3 𝑘𝑔𝑚² (68% confidence) (63) 

Using equations (28) and (10), the moment of inertia about the longitudinal axis of the generic profile is 
92.7 – 17.8 – 111.72 x 0.795² = 4.3. The partial derivatives can be computed with equations (38) – (42). The 
95% confidence is 1 kgm², thus for the generic profile: 

 𝐼𝑋𝑋 = 4 ± 1 𝑘𝑔𝑚² (95% confidence) (64) 

The obtained moment of inertia does not agree with the theoretical value mentioned in Table 1. 

The above methodology can also be applied for the moments of inertia about 𝑦- and 𝑧-axis, the resulting 
values are: 

 𝐼𝑌𝑌 = 82 ± 1 𝑘𝑔𝑚² (95% confidence) (65) 

 𝐼𝑍𝑍 = 82 ± 1 𝑘𝑔𝑚² (95% confidence) (66) 

In other words, none of the moments of inertia is predicted well enough. 

4.3. Problem identification and remediation 

The calibration of the generic profile seems to confirm the findings of Tello Ruiz et al., 2016. Moreover, an 
offset is present for all moments of inertia, however it is clearly discernible for the moment about the 
longitudinal axis due to its smaller value compared to the other moments. 

In the first place all formulae in the Excel sheets have been double checked, however, without finding any 
errors. 

The present pendulum was built in 2011 and was tested in September – November 2011 by the student 
Steve Claes from TU Delft in the frame of his internship, however, FHR never received the report from his 
internship, as he decided to stop his studies. On the other hand, the written notes are still available and 
show the successful calibration of the short pendulum with different I and H – profiles. 

Initially, only the short pendulum has been used. However, for bigger ship models, the medium pendulum 
(from 2012) and long pendulum (from 2013) were used as well. All pendulums weigh 50.8 kg, the only 
difference is the position from the base referred to the pendulum’s axis. Table 4 summarises the different 
calibrations. In addition, only the short pendulum was tested with known profiles. The other calibrations 
were performed with the same spreadsheet, but due to the long interval between the different 
calibrations, the results have never been compared before. 
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Table 4 – Calibrations of the three pendulums 

Parameter Short Medium Long 

Calibration date December 1, 2011 June 21, 2012 August 14, 2013 

Length between base 
and swing point (m) 

0.675 ± 0.001 0.875 ± 0.001 1.075 ± 0.001 

Position of the centre of 
gravity below swing 
point (m) 

0.342 ± 0.003 0.296 ± 0.004 0.362 ± 0.005 

𝐼𝑋𝑋 (kg m²) 19.1 ± 0.1 17.8 ± 0.1 24.2 ± 0.2 

𝐼𝑌𝑌 (kgm²) 21.3 ± 0.1 19.3 ± 0.1 25.6 ± 0.2 

It is most noticeable, that the position of the centre of gravity of the medium pendulum is closer to the 
swing point compared to the short pendulum, although the base of the medium pendulum is further away. 
A second observation, is that the position of the centre of gravity of the long pendulum is somewhat lower, 
but not sufficiently lower compared to the position of its base. Mind that the evolution of the moments of 
inertia is also strange, but this is ascribed to the influence of the centre of gravity. 

The only explanation for this can be that the centres of gravity of the medium and long pendulum are 
wrong. As the same spreadsheet was used for all pendulums, the only error could have occurred with the 
input data. Considering equation (14) and the fact that in all cases the same calibration weight was used, 
the error must be ascribed to the position of the calibration weight (𝑦𝐵𝐺 , 𝑧𝐵𝐺) and/or the reading of the 
deviation angle 𝛽, and most probably to 𝑦𝐵𝐺  as 𝑧𝐵𝐺  is computed automatically depending on the 
pendulum’s size. Please observe in Table 5 the different input position for 𝑦𝐵𝐺  for the short pendulum, 
compared to the medium and long pendulum. 

Table 5 – Position of the calibration weight 

Parameter Short Medium Long 

Calibration date December 1, 2011 June 21, 2012 August 14, 2013 

𝑦𝐵𝐺  (m) 0.400 ± 0.001 0.300 ± 0.001 0.300 ± 0.001 

Suppose 𝑦𝐵𝐺  of the short pendulum is the true value for all pendulums. In this case the results of the 
medium pendulum are: 

• Equation (14): 𝑧𝑆 = 0.448 ± 0.005 𝑚; 
• Equation (20): 𝐼𝑋𝑋 = 27.0 ± 0.2 𝑘𝑔𝑚²; 
• Equation (21): 𝐼𝑌𝑌 = 29.3 ± 0.2 𝑘𝑔𝑚²; 

And the results of the calibration of the generic profile would be: 

 𝐼𝑋𝑋 = 1.97 ± 1 𝑘𝑔𝑚² (95% confidence)  (67) 

 𝐼𝑌𝑌 = 84.67 ± 1 𝑘𝑔𝑚² (95% confidence) (68) 

 𝐼𝑍𝑍 = 85.41 ± 1 𝑘𝑔𝑚² (95% confidence) (69) 
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On purpose, more digits were added to the average value. The differences with the theoretical values are 
respectively 0.32, 0.86 and 0.07 kgm², which all are in the uncertainty interval. 

Clearly the wrong value of 𝑦𝐵𝐺  has been used for the medium and long pendulum. On the pendulum, marks 
were put to indicate were to place the ballast weight (a disc of diameter 0.2 m). The disc was placed on the 
correct mark, but the distance of the mark (border of the disc) was written down, instead of the distance of 
the centre of the disc. 

Fixing this error leads to a decrease of 2.5 kgm² of IXX for C0W07 in Tello Ruiz et al., 2016 or a fraction 0.73, 
which corresponds to the k-factor introduced in Tello Ruiz et al., 2016. 
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5. New determination of the pendulum’s inertia 

5.1. Overview 

From January 4 to January 6, 2017 the pendulum has been calibrated again in the three positions. Each 
position was tested with the generic profile. In the following paragraphs will the calibration will be 
discussed for each position. The calibration of the pendulum is performed according to sections 3.2 to 3.5. 
The mass of the pendulum is always 50.8 ± 0.2 kg. 

5.2.  Medium pendulum 

5.2.1. Position of the centre of gravity 

The position of the centre of gravity has been determined by multiple measurements on both the X- and Y-
pendulum, however only the most eccentric positions of the ballast disc are considered, due to the larger 
swing angle. The parameters of equation (14) are: 

• For all pendulums: 
o 𝑚𝑠 = 50.8 ± 0.2 kg; 
o 𝑚𝐵𝐺 = 9.899 ± 0.001 kg; 
o 𝑦𝐵𝐺  = ± 0.400 ± 0.001 m. 

• For the medium pendulum: 
o 𝑧𝐵𝐺  = 0.8555 ± 0.001 m 

• For the medium X-pendulum: 
o 𝛽0 = -0.09° ± 0.05 ° (the measured offset angle) 
o 𝛽 = 7.14° ± 0.05 ° (positive 𝑦𝐵𝐺) and -7.34° ± 0.05 ° (negative 𝑦𝐵𝐺) 

• For the medium Y-pendulum: 
o 𝛽0 = -0.30° ± 0.05 ° (the measured offset angle) 
o 𝛽 = 6.94° ± 0.05 ° (positive 𝑦𝐵𝐺) and -7.62° ± 0.05 ° (negative 𝑦𝐵𝐺) 

The net angles for the four measurements are (𝛽-𝛽0) listed in Table 6. 

Table 6 – Determination of the centre of gravity of the medium pendulum 

Measurement I II III IV 

Medium pendulum X X Y Y 

𝑦𝐵𝐺  (m) 0.400 ± 0.001 -0.400 ± 0.001 0.400 ± 0.001 -0.400 ± 0.001 

𝛽-𝛽0 (rad) 0.1262  ± 0.0009 0.1265  ± 0.0009 0.1264  ± 0.0009 0.1278 ± 0.0009 

𝑧𝑆 (m) (equation 14) 0.4472 0.4455 0.4464 0.4396 

The expanded uncertainty on the centre of gravity can be computed with the partial derivatives of equation 
(14). Following a similar method as described in equations (59) – (62), the following average value is 
obtained: 
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 𝑧𝑆 = 0.445 ± 0.005 𝑚 (95% confidence) (70) 

5.2.2. Moments of inertia 

The moments of inertia are determined based on the oscillation periods mentioned in Table 7 and Table 8. 
The results of these tables can be post-processed similarly to equations (59) – (62), yielding the following 
values: 

 IXX = 26.8 ± 0.2 kgm² (95% confidence)  (71) 

 𝐼𝑌𝑌 = 29.0 ± 0.2 𝑘𝑔𝑚² (95% confidence) (72) 

Please observe that the values of the new calibration overlap with the remediation in section 4.3.  

Table 7 – Measurement of the oscillation period of the empty medium size X-pendulum 

Measurement 5𝑇      (s) 𝐼𝑋𝑋 (kgm²) (eq. 20) Measurement 5𝑇      (s) 𝐼𝑋𝑋 (kgm²) (eq. 20) 

1 10.91 26.72346 6 10.92 26.77246855 

2 10.92 26.77247 7 10.92 26.77246855 

3 10.91 26.72346 8 10.92 26.77246855 

4 10.92 26.77247 9 10.92 26.77246855 

5 10.92 26.77247 10 10.92 26.77246855 

Table 8 – Measurement of the oscillation period of the empty medium size Y-pendulum 

Measurement 5𝑇      (s) 𝐼𝑌𝑌 (kgm²) (eq. 21) Measurement 5𝑇      (s) 𝐼𝑌𝑌 (kgm²) (eq. 21) 

1 11.37 29.02445 6 11.37 29.02445474 

2 11.36 28.97342 7 11.36 28.97342274 

3 11.36 28.97342 8 11.36 28.97342274 

4 11.36 28.97342 9 11.37 29.02445474 

5 11.37 29.02445 10 11.36 28.97342274 

5.2.3. Generic profile 

The values for the profile with the medium pendulum are now: 

 𝐼𝑋𝑋 = 2.04 ± 1 𝑘𝑔𝑚² (95% confidence)  (73) 

 𝐼𝑌𝑌 = 84.72 ± 1 𝑘𝑔𝑚² (95% confidence) (74) 

 𝐼𝑍𝑍 = 85.46 ± 1 𝑘𝑔𝑚² (95% confidence) (75) 
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5.3. All pendulums 

The short and long pendulum were calibrated following the same methodology. The results of all 
pendulums are given in Table 9. 

Table 9 – New calibrations of the three pendulums 

Parameter Short Medium Long 

Calibration date January 6, 2017 January 4, 2017 January 5, 2017 

Length between base 
and swing point (m) 

0.675 ± 0.001 0.875 ± 0.001 1.075 ± 0.001 

Position of the centre of 
gravity below swing 
point (m) 

0.342 ± 0.003 0.445 ± 0.005 0.548 ± 0.007 

𝐼𝑋𝑋 (kg m²) 19.1 ± 0.1 26.8 ± 0.2 38.9 ± 0.3 

𝐼𝑌𝑌 (kgm²) 21.2 ± 0.1 29.0 ± 0.2 36.7 ± 0.3 

The calibration of the generic profile is summarised in Table 10. In all cases the moments of inertia are 
predicted within the uncertainty interval, however, due to the smaller uncertainties, the best predictions 
are achieved with the shortest pendulum. The average values tend to be over predicted with increasing 
pendulum length. 

Table 10 – Generic profile 

Parameter Theoretical Short Medium Long 

Calibration date - January 6, 2017 January 3, 2017 January 5, 2017 

𝐼𝑋𝑋 (kg m²) 1.684 1.89 ± 0.9 (+12%) 2.04 ± 1 (+21%) 2.13 ± 1 (+26%) 

𝐼𝑌𝑌 (kgm²) 84.141 84.20 ± 1.0 (+0%) 84.72 ± 1 (+1%) 84.74 ± 2 (+1%) 

𝐼𝑍𝑍 (kgm²) 85.065 85.09 ± 0.9  (+0%) 85.46 ± 1 (+0%) 85.64 ± 1 (+1%) 
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6. Example for the KCS 

6.1. Determination of the characteristics of the empty ship model1 

The empty ship model is defined as the fully instrumented ship model with centre of gravity in the  
𝑥𝑧-plane, prior to adding ballast weights. The main dimensions of the empty KCS are: 

• LPP = 4.367 ± 0.001 m; 

• B = 0.611 ± 0.001 m; 

• T = 0.205 ± 0.001 m; 

• m = 153.0 ± 0.2 kg. 

6.1.1. Determination of the centre of gravity 

The centre of gravity is determined according to section 3.6. The medium pendulum has been used. The 
initial uncertainty is estimated at 0.001 m. The final uncertainty is however large, because the measured 
distances depend on: 

• The reading of the swing angle (should be 0°, or at least equal to the offset position at rest); 
• The symmetry of the ship’s position on the pendulum, which is determined by the distance 

between the ship model and the pendulum at different positions. 

For the empty KCS the position of the centre of gravity is: 

• 𝑥𝐺 = -0.364 ± 0.002 m; 

• 𝑦𝐺  =  ± 0.002 m; 

• 𝑧𝐺 = 0.0296 ± 0.003 m; 

with a confidence of 95%. 

6.1.2. Determination of the inertia tensor 

General 

The components of the inertia tensor are determined according to section 3.7. The ship model is put on the 
pendulum in such way that the masses are equally distributed (0° swing angle). The pendulum is swung and 
the duration to execute 5 oscillations is measured 10 times in the following pendulum positions: 

• X-pendulum; 

• Y-pendulum; 

• Z-pendulum; 

• Δ-pendulum (twice, with a different angle between the ship model and the pendulum’s axis). 

                                                           

1 http://wlsow.vlaanderen.be/shpgenerator/Lists/Modelvoorbereidingen/20170104_traagh_C0401.xlsm  

http://wlsow.vlaanderen.be/shpgenerator/Lists/Modelvoorbereidingen/20170104_traagh_C0401.xlsm
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X-, Y- and Z-pendulum 

The determination of 𝐼𝑋𝑋, 𝐼𝑌𝑌 and 𝐼𝑍𝑍 is similar. The ship model has to be positioned correctly on the 
pendulum (the pendulum’s axis has to be parallel with the inertia axis and the centre of gravity of the ship 
has to be on the same vertical as the centre of gravity of the pendulum) Equations (25) and (26) yield:  

 𝐼𝑋𝑋𝑇 = 110.0 ± 0.4 𝑘𝑔𝑚² (76) 

 𝐼𝑌𝑌𝑇 = 345.7 ± 0.7 𝑘𝑔𝑚² (77) 

 𝐼𝑍𝑍𝑇 = 324.0 ± 0.7 𝑘𝑔𝑚² (78) 

The confidence is 68% (preliminary result). The moments of inertia of the ship model are computed using 
equation (40): 

 𝐼𝑋𝑋 = 8 ± 1 𝑘𝑔𝑚² (79) 

 𝐼𝑌𝑌 = 242 ± 2 𝑘𝑔𝑚² (80) 

 𝐼𝑌𝑌 = 245 ± 2 𝑘𝑔𝑚² (81) 
 
with a confidence of 95%. 

Δ-pendulum 

The determination of 𝐼𝑋𝑍 is more complicated. The ship model is put with a certain angle on the  
Z-pendulum. The angle is determined by the distances between the keel plane the and the vertical profiles 
of the pendulum. The uncertainty of the measured angle is at least 0.05°. For the KCS the following two 
angles have been applied: 

• I: -24.8037°; 
• II: 23.440177°. 

The resulting total moments of inertia are: 

 𝐼∆𝐼𝑇 = 286.4 ± 0.6 𝑘𝑔𝑚² (82) 

 𝐼∆𝐼𝐼𝑇 = 281.1 ± 0.6 𝑘𝑔𝑚² (83) 

The confidence is 68% (preliminary result). The moments of inertia of the ship model are computed using 
equation (40): 

 𝐼∆𝐼 = 207.8 ± 0.7 𝑘𝑔𝑚² (84) 

 𝐼∆𝐼𝐼 = 202.5 ± 0.7 𝑘𝑔𝑚² (85) 

Via (36) and (43) - (46) 𝐼𝑋𝑍 can be determined: 

 𝐼𝑋𝑍 = −6 ± 7 𝑘𝑔𝑚² (86) 

with a confidence of 95%. 𝐼𝑋𝑍 does not seem to differ significantly from zero, which is due to equation (46), 
which is minimal for 𝜃 = 45. 

However there are reasons to still consider (86). The values for 𝐼𝑋𝑍  which were found for the different 
angles 𝜃 are: 

• I: -5.4 kgm²; 

• II: -7.3 kgm². 

The standard deviation of these two measurements is 1.3 kgm², which is significantly smaller than 7 kgm². 
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6.2. Ballasting the ship model2 

6.2.1. Desired values 

The ship model needs to have an even keel, with draft of 0.2051 m. This corresponds to: 

• 𝑥𝐺 = -0.065 m; 

• 𝑚𝑠𝑠ℎ𝑖𝑖 = 356.2 kg. 

The desired initial stability lever 𝐺𝑀����� should be equal to 0.011 m, which corresponds to a vertical position of 
the centre of gravity of 𝑧𝐺 = -0.068 m. This value cannot be obtained, due to the low position of the centre 
of gravity of the instrumented ship and the relatively low ballast weight to be added, see the previous 
section. Instead 𝑧𝐺 will be equal to -0.030 m, yielding 𝐺𝑀����� = 0.0487 m. 
 
The desired moments of inertia are: 

 𝐼𝑋𝑋 = 𝑚𝑠𝑠ℎ𝑖𝑖(0.35𝐵)2 = 16.3 𝑘𝑔𝑚² (87) 

 𝐼𝑌𝑌 = 𝐼𝑍𝑍 = 𝑚𝑠𝑠ℎ𝑖𝑖(0.25𝐿𝑃𝑃)2 = 424.6 𝑘𝑔𝑚² (88) 

There are no specific requirements for 𝐼𝑋𝑌. If the other requirements are met, 𝐼𝑋𝑌 should be as close as 
possible to zero. The uncertainties on the connection mechanism and the ballast weights is significantly 
smaller compared to the ship model. 

6.2.2. Connection plates 

Connection plates need to be added to support the gimbal. The U-shaped beam, the roll motor and the 
connection plates add to the ship’s displacement. They can also add to the moments of inertia: 

• Never about the y-axis (always free to pitch); 

• Mostly about the x-axis (roll is mostly fixed); 

• Always about the z-axis (yaw is always fixed). 

If a hinge is present, all mass above this hinge will not add to the moment of inertia or centre of gravity of 
the ship model. The KCS will only be free to pitch (and heave), thus only 𝐼𝑋𝑋3 and 𝐼𝑍𝑍 of the beam will be 
added. 

The share of the beam, roll motor and connection plates is: 

• 𝑚𝑏𝑝𝑎𝑚 = 78.551 kg; 

• 𝐼𝑋𝑋 𝑏𝑝𝑎𝑚 = 0.5024 kgm² 

• 𝐼𝑌𝑌 𝑏𝑝𝑎𝑚 = 0.4784 kgm² 

• 𝐼𝑍𝑍 𝑏𝑝𝑎𝑚 = 13.0816 kgm² 

• 𝐼𝑋𝑍 𝑏𝑝𝑎𝑚 = 0.0 kgm² 

 

                                                           
2 http://wlsow.vlaanderen.be/shpgenerator/Lists/Modelvoorbereidingen/20170109_ballast_C0401.xlsm  
3 The moment of inertia about the 𝑥-axis of the U-shape is considered to be  negligible. 𝐼𝑋𝑋 is thus not adapted. 

http://wlsow.vlaanderen.be/shpgenerator/Lists/Modelvoorbereidingen/20170109_ballast_C0401.xlsm
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expressed about the origin of the ship fixed axis system. To add the inertia of the empty ship model, they 
must be expressed about the same origin, using equations (50) and (51). The system ship + beam has then 
the following values (68% confidence): 

• 𝑥𝐺 = -0.241 ± 0.001 m; 

• 𝑧𝐺 =  0.028 ± 0.002 m; 

• 𝑚𝑠𝑠ℎ𝑖𝑖 = 231.6 ± 0.2 kg; 

• 𝐼𝑋𝑋 = 8.6 ± 0.5 kgm²; 

• 𝐼𝑌𝑌 = 263 ± 1 kgm²; 

• 𝐼𝑍𝑍 = 278 ± 1 kgm²; 

• 𝐼𝑋𝑍 = -8 ± 4 kgm². 

6.2.3. Determination of the position of the ballast weights 

The loading condition of the empty ship model with the beam, roll motors and connection plates does not 
correspond with the desired one. Ballast weights have to be added to obtain the desired loading condition. 
This is a rather iterative process, which starts by adding the heaviest ballast weights. Adding a ballast 
weight affects the inertia distribution as expressed by equations (47) to (49). 
 
The user provides the available coordinates (of the centre of gravity of the ballast weights) where ballast 
weights can be added. A macro tests all possible ballast distributions and selects the distribution which 
minimizes a cost function. This cost function is based on the differences between the actual inertia and the 
desired inertia. After adding the ballast weights, and after checking the ship’s draft, the following inertia is 
obtained: 

 𝒓𝑮 = �
−0.070 ± 0.002

0
−0.030 ± 0.003

� m (89) 

 𝑰𝟎 = �
13.9 ± 1 0 −10.8 ± 7

0 406.9 ± 2 0
−10.8 ± 7 0 422.6 ± 2

� kgm² (90) 

The obtained mass is 354.4 ± 0.2 kg. Mind the differences with the theoretical values. 

6.2.4. Checking the vertical position of the centre of gravity 

The vertical position of the centre of gravity has been checked by performing two heel tests. In a heel test 
the relationship 

 𝐾 =  ∆𝐺𝑀�����𝜑 (91) 

is tested for small heel angles. 

In a first test (free heel), the ship was free to heel, and calibrated weights were added on each side of the 
ship. With an inclinometer the resulting heel angle was measured. 

In a second test (forced heel), the roll engine was used to set the ship at a certain heel angle. The 
corresponding roll moment was measured. 

Figure 3 shows the corresponding relationships. The resulting vertical positions of the centre of gravity are: 

 𝑧𝐺,𝑓𝑟𝑝𝑝 = −0.034 𝑚  (92) 

 𝑧𝐺,𝑓𝑐𝑟𝑠𝑝𝑝 = −0.025 𝑚  (93) 
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The average value of both measurements is equal to the expected value, but the deviation is larger than 
the expected one. 

Figure 3 – Relationship between roll moment and heel angle 
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7. Recommendations 

• Use the shortest possible pendulum; 
• Ensure that pendulum edges are clean and sharp; 
• Any change to the pendulum should be validated with a new calibration for all pendulum positions, 

including the determination of the inertia of a known profile; 
• Determination of angles induce the largest uncertainty and should be avoided whenever possible. 

Although the inclinometer has a resolution of 0.05°, significant uncertainties are introduced due to 
the term 1 sin²𝛼�  in the partial derivative. If an angle has to be measured its value should be as 
large as possible (→45°) and/or the uncertainty has to be decreased by a significant number of 
repeat measurements; 

• Due to the uncertainty, it is irrelevant to use more than 1 decimal in the value of the moments of 
inertia; 

• Probably the uncertainties on the position of the centre of gravity are larger than the computed 
ones; 

• Inertia computations which were carried out between 2012 and 2016 can be corrected, but this will 
only be done for specific cases (e.g. benchmark data). 

• This report replaces (Delefortrie et al., 2012). 
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