

Nieuwe Sluis Zeebrugge (NSZ)

Nautische screening alternatieven met vaarsimulaties

Nieuwe Sluis Zeebrugge (NSZ)

Nautische screening alternatieven met vaarsimulaties

Vos, S.; Eloot, K.; Mostaert, F.

Juridische kennisgeving
Het Waterbouwkundig Laboratorium is van mening dat de informatie en standpunten in dit rapport onderbouwd worden door de op het moment van schrijven beschikbare gegevens en kennis.
De standpunten in deze publicatie zijn deze van het Waterbouwkundig Laboratorium en geven niet noodzakelijk de mening weer van de Vlaamse overheid of één van haar instellingen.
Het Waterbouwkundig Laboratorium noch iedere persoon of bedrijf optredend namens het Waterbouwkundig Laboratorium is aansprakelijk voor het gebruik dat gemaakt wordt van de informatie uit dit rapport of voor verlies of schade die eruit voortvloeit.

Copyright en wijze van citeren
© Vlaamse overheid, Departement Mobiliteit en Openbare Werken, Waterbouwkundig Laboratorium 2017 D/2017/3241/243

Deze publicatie dient als volgt geciteerd te worden:
Vos, S.; Eloot, K.; Mostaert, F. (2017). Nieuwe Sluis Zeebrugge (NSZ): Nautische screening alternatieven met vaarsimulaties. Versie 4.0. WL Rapporten, 17_002_1. Waterbouwkundig Laboratorium: Antwerpen.
Overname uit en verwijzingen naar deze publicatie worden aangemoedigd, mits correcte bronvermelding.

Documentidentificatie

Opdrachtgever:	Afdeling Maritieme Toegang	Ref.: W	17_002_1
Keywords (3-5):	Zeebrugge, toegankelijkheid NSZ, realtime simulatie		
Tekst (p.):	45	Bijlagen (p.)	234
Vertrouwelijk:	® Nee	® Online beschikbaar	

Auteur(s):	Vos, S.
Controle	

				Naam	Handtekening
Revisor(en):					
Projectleider:					
Eloot, K.					
Vos, S.					

Abstract

Binnen het project Nieuwe Sluis Zeebrugge (NSZ) werden in opdracht van de Afdeling Maritieme Toegang (aMT) met behulp van realtime vaarsimulaties zes locatiealternatieven nautisch gescreend:

- Visart
- VisarOost
- Carcockesite
- VandammeOost
- VandammeWest
- Verbindingsdok

Zowel kustloodsen (DABL) als dokloodsen (BRABO) voerden de vaarsimulaties uit, steeds geassisteerd door een sleepbootkapitein van Kotug Smit Towage. De kustloodsen simuleerden in de voorhaven, de dokloodsen in de achterhaven.

Het simulatieschip was een car-carrier waarvan zowel de lengte (265 m) als de breedte (40 m) gelijk zijn aan de maximale lengte en breedte van schepen die vandaag de dag naar de achterhaven van Zeebrugge varen. Deze dimensies werden door MBZ vastgelegd.

In het merendeel van de simulaties werd een wind ZW5 opgelegd, wat een veel voorkomende windconditie is. Twee sleepboten met maximale bollard pull van 85 ton assisteerden

Een kwalitatieve vergelijking op basis van de beoordeling van de loodsen en kapiteins, vergelijking van berekende parameters en ontmoetingen, leidden tot een (globale) rangorde van de verschillende alternatieven.

Men kan concluderen dat de alternatieven met een sluis parallel aan de P. Vandammesluis nautisch het best en gelijkwaardig scoren. Beide alternatieven worden gevolgd door het alternatief Verbindingsdok. De westelijke alternatieven, nl. Visart en Visart Oost scoren nautisch het slechtst. Het alternatief Carcockesite scoort net iets beter dan de twee andere westelijke alternatieven maar het verschil is klein.

Alle alternatieven kunnen echter verder geoptimaliseerd worden zodanig dat de toegang van en naar de sluizen veiliger en vlotter kan verlopen. Het is immers duidelijk dat alle westelijke alternatieven zich in een meer verstedelijkte zone van de haven bevinden waardoor ze vermoedelijk niet dezelfde verruiming kunnen ondergaan als de oostelijke alternatieven. Het bestuderen van optimalisaties kan onderwerp vormen van verder (simulatie)studiewerk.

[^0]
Inhoudstafel

Abstract III
Inhoudstafel IV
Lijst van de tabellen VI
Lijst van de figuren VII
1 Inleiding 1
1.1 Situering 1
1.2 Onderzoeksvraag 1
1.3 Inhoud 1
2 Input 2
2.1 Alternatieven 2
2.2 Simulatieschip 7
2.3 Simulatieomgeving 8
2.3.1 Waterstand 8
2.3.2 Bathymetrie 8
2.3.3 Wind 8
2.3.4 Stroming 10
2.3.5 Golven. 10
2.3.6 Oevereffecten 10
2.3.7 Sleepboten 10
2.3.8 Afgemeerde schepen 10
3 Simulaties 11
3.1 Loodsen en kapiteins 11
3.2 Programma 11
3.3 Analyse 12
3.3.1 Evaluatie loodsen en kapiteins 12
3.3.2 Grafieken 13
3.3.3 Vaarbaanplots 13
3.3.4 Opsplitsing in secties 14
3.3.5 Ontmoetingen 18
4 Resultaten 20
4.1 Evaluatie loodsen en sleepbootkapiteins 20
4.2 Parameters 21
4.2.1 Uitvoeringstijd 22
4.2.2 Gemiddelde snelheid 24
4.2.3 Sleepboothulp 26
4.2.4 Boegschroef 30
4.2.5 Afstand tot constructie 32
4.2.6 Samenvatting parameters 33
4.3 Ontmoetingen 34
4.3.1 Simulatie 35: Verbindingsdok VH 34
4.3.2 Simulatie 36: VisartOost AH 35
4.3.3 Simulatie 37: Visart VH 36
4.3.4 Simulatie 38: VandammeOost AH 38
4.3.5 Simulatie 39: Verbindingsdok VH 39
4.3.6 Simulatie 40: VandammeWest VH 40
4.3.7 Samenvatting 41
4.4 Bedenkingen en commentaar van loodsen en kapiteins 41
4.4.1 Bedenkingen per alternatief 41
4.4.2 Algemeen 42
5 Samenvatting en conclusie 43
5.1 Samenvatting. 43
5.2 Conclusie 44
Bijlage 1: Simulatieoverzicht B1
Bijlage 2: Commentaar bij simulaties B3
Bijlage 3: Grafieken B6
Bijlage 4: Vaarbaanplots - statisch B119
Bijlage 5: Vaarbaanplots - animatie (KMZ-bestanden) B132
Bijlage 6: Coördinaten snijlijnen B134

Lijst van de tabellen

Tabel 1 - Alternatieven 2
Tabel 2 - Algemene kenmerken simulatieschip carCar_265_400_NSZ 7
Tabel 3 - Snelheden in overeenstemming met telegraafstanden in diep water 7
Tabel 4 - Distributie van de actuele windsterkte in functie van de geselecteerde windsterkte 9
Tabel 5 - Relatie tussen windsnelheid in Beaufort (Bft), km/h, m/s en knoop 9
Tabel 6 - Loodsen en kapiteins die deelnamen aan de studie 11
Tabel 7-Programma 11
Tabel 8 - Aantal uitgevoerde simulaties in voor- en achterhaven, opgedeeld per in- en uitvaart 12
Tabel 9 - Schaal gebruikt voor evaluatie door loodsen voor moeilijkheid / concentratie en reserves 13
Tabel 10 - Trajecten tussen twee snijlijnen in voor- en achterhaven 15
Tabel 11 - Aantal simulaties bij ZW5 20
Tabel 12-Moeilijkheid / concentratie 21
Tabel 13 - Reserve 21
Tabel 14 - Gemiddelde uitvoeringstijd [min] (waarden afgerond tot op één minuut) 23
Tabel 15-Gemiddelde snelheid [knoop] 25
Tabel 16-Gemiddelde stuwkracht_impuls sleepboot achteraan [ton*min]. 27
Tabel 17-Gemiddelde stuwkracht_impuls sleepboot vooraan [ton*min]. 29
Tabel 18-Gemiddelde boegschroef_impuls [ton*min] 31
Tabel 19 - Percentages minimale afstanden [\% uitvoeringstijd] 33
Tabel 20 - Orde op basis van berekende parameters 33
Tabel 21 - Overzicht uitgevoerde gekoppelde simulaties 34
Tabel 22 - Rangorde samengevat 44
Tabel 23 - Simulaties (gesorteerd per alternatief) met vermelding simulatietijd, beoordeling moeilijkheid / concentratie en reserve B1
Tabel 24 - Commentaar bij de simulatie. B3
Tabel 24 - Coördinaten snijlijnen (Lambert 72) B134

Lijst van de figuren

Figuur 1 - Globaal overzicht van de locatiealternatieven. 3
Figuur 2 - Alternatief Visart 4
Figuur 3 - Alternatief VisartOost 4
Figuur 4 - Alternatief Carcockesite 5
Figuur 5 - Alternatief VandammeOost 5
Figuur 6-Alternatief VandammeWest 6
Figuur 7 - Alternatief Verbindingsdok 6
Figuur 8 - Windroos op locatie ZMP Meteopark (P. Vandammesluis): snelheid in m/s. 8
Figuur 9 - Aanduiding afgemeerde schepen 10
Figuur 10-KMZ-bestanden 14
Figuur 11 - Snijlijnen in voorhaven (blauw opvaart, groen afvaart) 15
Figuur 12 - Snijlijnen in achterhaven (blauw opvaart, groen afvaart) 16
Figuur 13-SIM225_Carcockesite_006 volledige voorstelling simulatie met snijlijnen AHo2 en AHo5 16
Figuur 14-SIM225_Carcockesite_004, voorbeeld berekening afstand tot constructie 19
Figuur 15-Gemiddelde uitvoeringstijd [min] 22
Figuur 16-Gemiddelde snelheid [knoop] 24
Figuur 17- Gemiddelde stuwkracht_impuls sleepboot achteraan [ton*min] 26
Figuur 18-Gemiddelde stuwkracht _impuls sleepboot vooraan [ton*min] 28
Figuur 19- Gemiddelde boegschroef_impuls [ton*min] 30
Figuur 20-Afstand tot constructie 32
Figuur 21 - Simulatie 35 - Links: 0' - 17'; Rechts: 17' - 22’ (SIM360_Verbindingsdok_gek_002.kmz) 35
Figuur 22 - Simulatie 35 - Minimale afstanden tot kaai - Links invarend; Rechts: uitvarend 35
Figuur 23 - Simulatie 36 - Links: 0' - 17'; Rechts: 17' - 25^{\prime} (SIM360_VisartOost_gek_001.kmz) 36
Figuur 24 - Simulatie 36 - Minimale afstanden tot kaai - Links invarend; Rechts: uitvarend 36
Figuur 25 - Simulatie 37 - Links: 0' - 14'; Rechts: 14' - 24^{\prime} (SIM360_Visart_gek_001.kmz) 37
Figuur 26-Simulatie 37 - Minimale afstanden tot kaai - Links: uitvarend; Rechts: invarend 37
Figuur 27 - Simulatie 38 - Links: 0' - 13'; Rechts: 13^{\prime} - 25^{\prime} (SIM360_VandammeOost_gek_001.kmz) 38
Figuur 28 - Simulatie 38 - Minimale afstanden tot kaai - Links: invarend; Rechts: uitvarend 38
Figuur 29-Simulatie 39 - Links: 0' - 15'; Rechts: 15' - 23' (SIM360_Verbindingsdok_gek_003.kmz) 39
Figuur 30-Simulatie 39 - Minimale afstanden tot kaai - Links: uitvarend; Rechts: invarend 39
Figuur 31 - Simulatie 40 - Links: 0^{\prime} - 12'; Rechts: 12' - 19' (SIM360_VandammeWest_gek_002.kmz) 40
Figuur 32 - Simulatie 40 - Minimale afstanden tot kaai - Links: uitvarend; Rechts: invarend 40

1 Inleiding

1.1 Situering

Onderstaande informatie is grotendeels afkomstig van de website www.nieuwesluiszeebrugge.be.
De achterhaven van Zeebrugge is een zone die volop groeit. Momenteel verloopt het scheepvaartverkeer naar die achterhaven louter via de Pierre Vandammesluis. De tweede zeesluis die momenteel toegang biedt tot de achterhaven, de Visartsluis, dateert immers al van 1907, is sterk verouderd en beantwoordt niet meer aan de noden van de huidige scheepvaart. Het verbeteren van de nautische toegankelijkheid tot de (achter)haven van Zeebrugge is daarom nodig.

De Pierre Vandammesluis draait vandaag al op volle toeren. Deze sluis is bovendien sinds 1984 in gebruik en ondergaat momenteel grote onderhoudswerkzaamheden. Tijdens deze onderhoudswerkzaamheden is vastgesteld dat ingrijpende werkzaamheden op middellange termijn noodzakelijk zullen zijn om de sluis op lange termijn in bedrijf te houden. Voor deze werkzaamheden zal de Pierre Vandammesluis gedurende een langere tijd buiten gebruik gesteld moeten worden met als gevolg dat het schutten van schepen via de Pierre Vandammesluis voor enige tijd onmogelijk zal zijn.

De realisatie van een tweede volwaardige toegang tot de achterhaven is, rekening houdend met de verdere ontwikkeling van de achterhaven en de bijhorende capaciteitsnoden enerzijds en huidige staat van de Pierre Vandammesluis anderzijds, een noodzaak.

Op 15 juli 2016 nam de Vlaamse Regering de startbeslissing voor het project dat van cruciaal belang is voor de verdere groei en ontwikkeling van de haven van Zeebrugge. Dit project wordt getrokken vanuit het departement Mobiliteit en Openbare Werken en dit volgens de procesaanpak voor complexe projecten in Vlaanderen. De aanpak voor complexe projecten streeft naar een efficiënt en kwaliteitsvol proces, dat gericht is op de realisatie van een complex project binnen een aanvaardbare termijn en met een maximaal draagvlak. Meer informatie over de procesaanpak vindt men op http://www.complexeprojecten.be/.

Het project, genaamd Nieuwe Sluis Zeebrugge (NSZ), heeft als doel een nieuwe tweede toegang tot de achterhaven te realiseren op de meest aangewezen locatie. Daartoe worden verschillende alternatieven grondig bestudeerd alvorens een definitieve keuze gemaakt wordt. Daarna volgt nog de technische uitwerking en de uitvoering van het gekozen alternatief.

1.2 Onderzoeksvraag

Afdeling Maritieme Toegang (aMT) vraagt aan het Waterbouwkundig Laboratorium (WL) om zes verschillende locatiealternatieven nautisch te screenen en dit met behulp van realtime vaarsimulaties. Een nauwe samenwerking met loodsen en sleepbootkapiteins was hierbij cruciaal.

1.3 Inhoud

Hoofdstuk 2 beschrijft de input voor de studie waaronder de verschillende locatiealternatieven, het simulatieschip en de simulatieomgeving. Hoofdstuk 3 bevat het simulatieprogramma met daarnaast een bespreking van de methodiek van de analyse. In hoofdstuk 4 worden vervolgens de resultaten van de analyse gepresenteerd. Ten slotte volgt er in hoofdstuk 5 een samenvatting en een conclusie.

2 Input

2.1 Alternatieven

Afdeling Maritieme Toegang (aMT) bezorgde de alternatieven uit Tabel 1 in dwg-formaat waarna deze vervolgens geïmplementeerd werden in de simulator. In Figuur 1 worden de verschillende locaties aangeduid met nummers. Figuur 2 tot en met Figuur 7 tonen de lijnen van de omgevingen zoals ze in de simulator ingebouwd werden.

Merk hierbij op dat het alternatief Visart en VisartOost in de achterhaven afwijken van elkaar. In Visart is de doorvaarbreedte in de achterhaven slechts (+/-) 90 m daar waar deze in het alternatief VisartOost (+/-) 130 m bedraagt. Het sluizencomplex in het alternatief Verbindingsdok werd zuidelijk in het Verbindingsdok ingetekend vermits bij een meer noordelijke intekening een schip met lengte 265 m de oostelijke sluis in de voorhaven niet kan bereiken.

Tabel 1 - Alternatieven

Alternatief	Beschrijving	Locatie in Figuur 1	Ref naar figuur
Visart	Vervanging huidige Visartsluis door nieuwe sluis	1	Figuur 2
VisarOost	Nieuwe sluis ten oosten van huidige Visartsluis Huidige Visartsluis verdwijnt	2	Figuur 3
Carcockesite	Nieuwe sluis in de westelijke achterhaven. Huidige Visartsluis verdwijnt en ter plaatse van deze sluis wordt een kanaal (breedte 85 m) voorzien dat de toegang voorziet tot de nieuwe sluis.	3	Figuur 4
VandammeOost	Nieuwe sluis ten oosten van huidige P. Vandammesluis	4	Figuur 5
VandammeWest	Nieuwe sluis ten westen van huidige P. Vandammesluis	5	Figuur 6
Verbindingsdok	Twee nieuwe sluizen in het huidige verbindingsdok. P. Vandammesluis verdwijnt en ter plaatste hiervan wordt een kanaal voorzien (breedte 130 m) dat de toegang voorziet tot de sluizen	6	Figuur 7

Figuur 1-Globaal overzicht van de locatiealternatieven

Figuur 2 - Alternatief Visart

Figuur 3 - Alternatief VisartOost

Figuur 4 - Alternatief Carcockesite

Figuur 5 - Alternatief VandammeOost

Figuur 6 - Alternatief VandammeWest

Figuur 7 - Alternatief Verbindingsdok

2.2 Simulatieschip

Typische (horizontale) scheepsafmetingen van car-carriers die vandaag de dag naar de achterhaven van Zeebrugge varen zijn:

- 265 m * 33.3 m;
- 230 m * 32.6 m;
- $200 m^{*}(32.3 \mathrm{~m}-39.5 \mathrm{~m})$

Tabel 2 bevat enkele algemene karakteristieken van het simulatieschip. Het schip is een car-carrier waarvan zowel de lengte als de breedte gelijk zijn aan de maximale lengte en breedte van schepen die vandaag de dag naar de achterhaven van Zeebrugge varen. Deze dimensies door MBZ vastgelegd. De diepgang werd gelijk aan 9.5 m genomen welke eerder een grote maar gangbare diepgang is. Tabel 3 toont de maximale vaarsnelheden van het simulatieschip bij vier telegraafstanden.

Tabel 2 - Algemene kenmerken simulatieschip carCar_265_400_NSZ

Parameter	Waarde		
$\mathrm{L}_{\mathrm{oa}}[\mathrm{m}]$	265		
$\mathrm{~L}_{\mathrm{pp}}[\mathrm{m}]$	247		
B [m]	40		
T [m]	9.5		
Massa [ton]	45781		
Aantal schroeven	1		
Aantal roeren	1		
Vermogen boegschroef [pk]	2800		
Awx [m²]	900		
Awy [m²]	5746		

Tabel 3 - Snelheden in overeenstemming met telegraafstanden in diep water

Telegraafstand	Rpm	Snelheid [knoop]
Dead Slow	30.0	6.3
Slow	49.8	10.6
Half	64.8	13.8
Harbour Full	75.0	16.0

Het simulatieschip werd door twee kustloodsen (Hans Defurne en Roland Callebout) gevalideerd op $23 / 02 / 2017$. Deze loodsen beschouwden het model als 'ok voor de simulatiestudie'. Ter informatie wordt nog vermeld dat de massa van het schip twee keer zo groot is als deze van een schip met eenzelfde blokcoëfficiënt, lengte 200 m , breedte 32.2 m en diepgang 7 m . Dit geeft aan dat de inertie van het simulatieschip groot is t.o.v. vertrouwde inertie van schepen waarmee men regelmatig een sluis in Zeebrugge aanloopt.

2.3 Simulatieomgeving

2.3.1 Waterstand

De waterstand in zowel de voor- als de achterhaven bedroeg 3.40 m TAW.

2.3.2 Bathymetrie

Op locaties waar geen wijzigingen werden doorgevoerd t.o.v. de huidige toestand is de beschikbare bathymetrie uit de simulator gebruikt. Elders werd de bodem op -15.1 m TAW gelegd. Alle getekende lijnen (zie zwarte lijnen in Figuur 2 t.e.m. Figuur 7) werden als kaaimuren voorzien.

2.3.3 Wind

Figuur 8 toont een windroos van windsnelheden gemeten in de periode 'januari 1977 - december 2002' aan de P. Vandammesluis. Hieruit volgt dat in minder dan 10% van de tijd de windsnelheid groter was dan $10 \mathrm{~m} / \mathrm{s}$. Wind uit richtingen tussen zuid en oostnoordoost kwamen het minst voor.

Figuur 8 - Windroos op locatie ZMP Meteopark (P. Vandammesluis): snelheid in m / s

Bron: hTTP://www.vLAAMSEHYDROGRAFIE.BE/HM_ATLAS_CD/www/KLIMAAT/WIND_KLIMAAT/ZMPWISWVS/RER.HTM
De alternatieven dienden kwalitatief met elkaar vergeleken te worden. Het was dus niet de bedoeling om operationele grenzen te bepalen waarbij een bepaalde sluisaanloop mogelijk is. Om het aantal condities niet onnoemelijk op te drijven, werd er voorgesteld om te simuleren bij wind Zuidwest 5 Bft . Dit is een veel voorkomende windconditie in de haven.

De windmodule in de simulator is geïmplementeerd met een vlagerigheid zowel in grootte als in richting. De geselecteerde windsnelheid (bij de start van een simulatie) is een synoptisch gemiddelde snelheid over een gemeten periode van 10 minuten waarbij de fluctuaties van de windsnelheid en windrichting gemodelleerd werden volgens een Von Kármán spectrum. Tabel 4 toont de relatie tussen geselecteerde windsterkte (op de simulator) en de distributie van de windsnelheid. De gemiddelde windsnelheid voor 5 Bft is $9.4 \mathrm{~m} / \mathrm{s}$. Bij een selectie van 5 Bft werkt 61.6% van de tijd windkracht 5 op het schip, 18.9% windkracht 6 en 0.3% windkracht $7.19 .2 \%$ van de tijd is de windsterkte kleiner dan windkracht 5 . Ter informatie wordt in Tabel 5 de relatie weergegeven tussen de windsnelheid in Beaufort, in $\mathrm{km} / \mathrm{h}, \mathrm{m} / \mathrm{s}$ en knoop.

Tabel 4 - Distributie van de actuele windsterkte in functie van de geselecteerde windsterkte

Selected wind force		Distribution of the actual wind force						
$\mathbf{B f t}$	\mathbf{m} / s	$\mathbf{3 ~ B f t}$	$\mathbf{4 ~ B f t}$	$\mathbf{5} \mathbf{~ B f t}$	$\mathbf{6 ~ B f t}$	$\mathbf{7 ~ B f t}$	$\mathbf{8 ~ B f t}$	$\mathbf{9 ~ B f t}$
$\mathbf{4}$	6.7	2.7	84.6	12.7				
$\mathbf{5}$	9.4	0.7	18.5	61.6	18.9	0.3		
$\mathbf{6}$	12.3	0.1	1.9	21.6	54.9	20.5	1	
$\mathbf{7}$	15.5		0.2	3.5	23.7	46.8	23.6	2.2

Tabel 5 - Relatie tussen windsnelheid in Beaufort (Bft), $\mathrm{km} / \mathrm{h}, \mathrm{m} / \mathrm{s}$ en knoop

Beaufort / kracht	km/h*	m/s*	knots
0	0-1	0-0.2	0-1
1	1-5	0.3-1.5	1-3
2	6-11	1.6-3.3	4-6
3	12-19	3.4-5.4	7-10
4	20-28	5.5-7.9	11-16
5	29-38	8.0-10.7	17-21
6	39-49	10.8-13.8	22-27
7	50-61	13.9-17.1	28-33
8	62-74	17.2-20.7	34-40
9	75-88	20.8-24.4	41-47

* Gemiddelde windsnelheid gemeten over 10 minuten.

Afscherming van afgemeerde schepen werd niet voorzien tijdens de simulaties. Luwten als gevolg van een afgemeerd schip waren met andere woorden niet aanwezig. Hetzelfde geldt voor de sluis waarin geen afscherming door de sluismuren of bruggen optreedt.

2.3.4 Stroming

Simulaties werden uitgevoerd zonder stroming omdat dit zeer weinig invloed heeft op de verschillende manoeuvres. In de buurt van de sluizen is de stroming immers te verwaarlozen.

2.3.5 Golven

Golven werden niet beschouwd.

2.3.6 Oevereffecten

Het simulatormodel bevat oevereffecten.
Wanneer men bijvoorbeeld asymmetrisch in een kanaal vaart dan zal (meestal) oeverzuiging optreden naar de dichtste oever. Daarnaast wordt ook de boeg als het ware weggeduwd van de dichtste oever.

2.3.7 Sleepboten

Sleepboten met een maximale sleepkracht van 85 ton waren beschikbaar en deze werden bediend door sleepbootkapiteins met ervaring in Zeebrugge.

2.3.8 Afgemeerde schepen

Volgende schepen (zie Figuur 9) werden afgemeerd:

- Containerschip ($300 \mathrm{~m} \times 42 \mathrm{~m}$) aan CHZ;
- Een passagiersschip ($264 \mathrm{~m} \times 32 \mathrm{~m}$) aan cruiseterminal;

Figuur 9 - Aanduiding afgemeerde schepen

3 Simulaties

3.1 Loodsen en kapiteins

Zowel kustloodsen van DABL als dokloodsen van BRABO (Breydel / cvba Vlaamse Havenloodsen Regio Kust) werden betrokken in de studie. Daarnaast assisteerde een sleepbootkapitein (Kotug Smit Towage) tijdens de manoeuvres. Tabel 6 geeft een lijst van de loodsen en kapiteins die deelnamen aan de studie.

Tabel 6 - Loodsen en kapiteins die deelnamen aan de studie

DABL	BRABO / Breydel / CVBA VHLK	Kotug Smit Towage
Hans Defurne	Pim Veulemans	Christoph Pape
Roland Callebout	Perrie Wagener	Daniel De Graeve
Luc Geets	Nico Cant	
Thomas Verworst	René Montaufraix	
Marc Reubens	Marc Vandermeulen	
Jan Rys	Manuel Caeyzeele	
Patrick Mahieu	Marc Geerinckx	

3.2 Programma

In Tabel 7 wordt het programma van de simulatiestudie voorgesteld. Eerst valideerden twee kustloodsen het simulatieschip waarna vervolgens kust- en dokloodsen simuleerden in de verschillende alternatieven met assistentie van een sleepbootkapitein. Kustloodsen varen dagelijks in de voorhaven, dokloodsen in de achterhaven. Vandaar dat hierin ook een onderscheid gemaakt werd in de studie. Op 21/03/2017 voeren zowel kust- als dokloodsen waarbij het doel eruit bestond om ontmoetingen uit te voeren op verschillende locaties.

Tabel 7 - Programma

Doel	Datum
Validatie van het simulatieschip	$23 / 02 / 2017$
Simulaties met kustloodsen in de voorhaven	$9 / 03 / 2017$ en 13/03/2017
Simulaties met dokloodsen in de achterhaven	$15 / 03 / 2017$ en 21/03/2017
Gekoppelde simulaties met zowel kust- als dokloodsen in de voor- en de achterhaven	$20 / 03 / 2017$

Simulaties werden hoofdzakelijk bij ZW5 uitgevoerd. Deze windconditie is veel voorkomend. In enkele simulaties voer men met ZW3. Dit waren meestal de eerste simulaties van een simulatiedag waarbij de vaart als gewenningsvaart / referentievaart kan gerekend worden. Op vraag van de loodsen werd twee keer met ZW6 gesimuleerd.

In totaal werden 52 simulaties uitgevoerd (voornamelijk ${ }^{1}$ op simulator SIM225) waarvan 8 gekoppelde simulaties. Bij 2^{2} van deze 8 was er een probleem met het roer en vandaar dat deze simulaties verder niet meer beschouwd worden. Er zijn met andere woorden 44 niet-gekoppelde simulaties en 6 gekoppelde simulaties. Per gekoppelde simulatie werden er twee simulatiefiles gegenereerd, voor elke simulator één. Dit resulteert in totaal in $56(44+2 * 6)$ simulatiefiles. Tabel 8 toont voor deze 56 simulaties het aantal uitgevoerde simulaties per alternatief, gesplitst volgens voor- en achterhaven.

Tabel 8 - Aantal uitgevoerde simulaties in voor- en achterhaven, opgedeeld per in- en uitvaart

	Voorhaven (VH)		Achterhaven (AH)	
	In	Uit	In	Uit
Visart	3	3	2	2
VisartOost	2	0	1	3
Carcockesite	2	2	2	2
VandammeOost	2	3	3	4
VandammeWest	3	1	2	2
Verbindingsdok	4	4	2	2

Een overzicht van de simulaties vindt men terug in Bijlage 1.

3.3 Analyse

3.3.1 Evaluatie loodsen en kapiteins

Na elke simulatie volgde een korte bespreking met de loodsen en sleepbootkapitein over het uitgevoerde manoeuvre. Er werd enerzijds gepolst naar de moeilijkheid of nodige concentratie voor uitvoering van het manoeuvre. Ook de beschikbare reserves werden gequoteerd. Deze reserves staan in verband met het gebruik van machine, roer en sleepbootgebruik. Als afstanden tot harde constructies klein werden, dan kan men dit ook beschouwen als weinig reserve. Voor beide criteria (moeilijkheid/concentratie en reserves) werd vervolgens een score gegeven op een schaal van 1 tot 6 waarbij 1 zeer gunstig is en 6 problematisch. In Tabel 9 wordt de schaal, gebruikt voor de quotering, voorgesteld.

[^1]Naast de numerieke beoordeling werd ook commentaar genoteerd bij de simulaties. Deze commentaar werd opgenomen in Bijlage 2.

Tabel 9 - Schaal gebruikt voor evaluatie door loodsen voor moeilijkheid / concentratie en reserves

Moeilijkheid / concentratie						
1	2	3	4	5	6	
Zeer gemakkelijk	Gemakkelijk	Normaal	Moeilijk	Zeer moeilijk	Onuitvoerbaar	
Reserves						
1	2	3	4	5	6	
Gelukt met veel reserve	Gelukt met voldoende reserve	Gelukt met weinig reserve	Ten einde gebracht met incidenten zonder schade	Niet gelukt met schade	Niet gelukt/ opgegeven	

3.3.2 Grafieken

Grafieken werden gegenereerd waarbij parameters van het schip en de sleepboten voorgesteld worden.
Sleepboot 3 was steeds de achterste sleepboot, sleepboot 4 steeds de voorste.
Grafieken bevinden zich in Bijlage 3.

3.3.3 Vaarbaanplots

Statisch

Van elke simulatie werd een vaarbaanplot gegeneerd. Deze bevinden zich in Bijlage 4. Hierop worden scheepscontouren in functie van de tijd getekend. Het plotinterval wordt onderaan de vaarbaanplot genoteerd. Bij de contour met een afwijkende kleur werd een tijdsaanduiding toegevoegd.

De plots worden als volgt gesorteerd:

- Visart
- VisartOost
- Carcockesite
- VandammeOost
- VandammeWest
- Verbindingsdok

De gekoppelde simulaties worden als laatste voorgesteld.

Dynamisch: KMZ-bestanden

Van alle simulaties werden vaarbaanplots in de vorm van KMZ-bestanden (Bijlage 5) gegenereerd. Deze kan men openen en bekijken in GoogleEarth ${ }^{\text {TM }}$. Naast een volledige visualisatie van het traject van schip en sleepboten kan men ook de vaart opnieuw afspelen of deels visualiseren. Figuur 10 (links) toont een geopend KMZ-bestand in GoogleEarth ${ }^{\text {TM }}$ van simulatie SIM225_Carcockesite_001.

Bij openen van het bestand vindt men in GoogleEarth ${ }^{\top}$ links informatie over de simulatie terug in de vorm van een boomstructuur, zie Figuur 10 (rechts). Volgende niveaus kunnen handig zijn om aan of af te vinken:

- own: simulatieschip (blauw)
- tug3: voorste sleepboot (magenta)
- tug4: achterste sleepboot (wit)
- vrex: afgemeerd vreemd schip x
- Buoys, Bollards, Lights: Buoy_labels: inhoud in benaming
- harbourCnt: de contour van de simulatieomgeving, getekend in het zwart

Bij het openen van de niveaus tug3 en tug4, ziet men in functie van de tijd in het label ook de gebruikte sleepbootkracht.

De KMZ-bestanden bevinden zich in het rapport en kunnen lokaal opgeslagen worden door ze allemaal te selecteren in bijvoorbeeld Adobe Acrobat Reader en vervolgens op te slaan via de rechtermuisknop.

Figuur 10-KMZ-bestanden

Links: VISUALISATIE VAN EEN DEEL VAN SIMULATIE 'SIM225_CARCOCKESITE_001'
Rechts: Boomstructuur kmz-bestand

3.3.4 Opsplitsing in secties

Om een analyse uit te voeren werd uit elke simulatie een deeltraject geselecteerd en dit door definiëring van twee snijlijnen (coördinaten in Bijlage 6). Figuur 11 en Figuur 12 tonen de snijlijnen voor respectievelijk de voor- en de achterhaven. Hierbij worden de blauwe lijnen gebruikt bij een simulatie in opvaart, de groene voor een afvaart. Tabel 10 toont de combinaties van snijlijnen die gebruikt werden voor de definitie van de deeltrajecten. Deze werden zo gedefinieerd zodat een schip ongeveer hetzelfde traject omvat in op- als in afvaart. Bij vertrek uit de sluis start het deeltraject van zodra het schip volledig uit de sluis is. Bij een manoeuvre naar de sluis duurt het deeltraject totdat de boeg gelijk komt met de sluisingang.

Een deeltraject bij een simulatie in het alternatief Visart richting de sluis in de voorhaven, wordt bijvoorbeeld gegeneerd door het 'knippen' op het moment dat de boeg snijlijn VHo1 snijdt tot dat de boeg van het schip snijlijn VHo2 (ingang sluis) snijdt. Voor het afvarend manoeuvre gelden de snijlijnen VHa2 en VHa1. In Figuur 13 wordt simulatie SIM_Carcockesite_006 volledig voorgesteld samen met de snijlijnen AHo2 en AHo5. Het deeltraject in deze simulatie loopt vanaf het moment dat het schip AHo2 snijdt totdat
het AHo5 snijdt. Het idee achter de definitie is dat het schip zich nooit in de sluis bevindt en dat schepen in voor- en achterhaven steeds van een gemeenschappelijk punt vertrekken of er toekomen. Op die manier kunnen parameters het met elkaar vergeleken worden.

Tabel 10 - Trajecten tussen twee snijlijnen in voor- en achterhaven

	Voorhaven (VH)		Achterhaven (AH)	
	Op (blauwe lijnen)	Af (groene lijnen)	Op (blauwe lijnen)	Af (groene lijnen)
Visart	VHo1 - VHo2	VHa2 - VHa1	AHo1-AHo5	AHa5-AHa1
VisartOost	VHo1 - VHo2	VHa2 - VHa1	AHo1-AHo5	AHa5 - AHa1
Carcockesite	VHo1 - VHo3	VHa3 - VHa1	AHo2-AHo5	AHa5-AHa2
VandammeOost	VHo1 - VHo4	VHa4 - VHa1	AHo3 - AHo6	AHa6- AHa3
VandammeWest	VHo1 - VHo4	VHa4 - VHa1	AHo3-AHo6	AHa6- AHa3
Verbindingsdok	VHo1 - VHo5	VHa5 - VHa1	AHo4-AHo6	AHa6- AHa4

Figuur 13-SIM225_Carcockesite_006 volledige voorstelling simulatie met snijlijnen AHo2 en AHo5

Voor elke simulatie werd er op deze manier een deeltraject geselecteerd waarbinnen vervolgens per simulatie parameters berekend werden. De parameters worden hieronder verder beschreven.

Definieer T1 en T2 als de momenten waarop het schip respectievelijk snijlijn 1 en 2 snijdt.

Tijden

De tijd wordt gedefinieerd als uitvoeringstijd:

$$
\text { uitvoeringstijd }=T 2-T 1
$$

Hoe groter de uitvoeringstijd, hoe langer het schip er zal over doen tot op zijn bestemming.

Gemiddelde snelheid

De gemiddelde snelheid wordt gedefinieerd als:

$$
\text { gemiddelde snelheid }=\frac{1}{T 2-T 1} \sum_{T 1}^{T 2} u(t) \Delta t
$$

Hoe groter de gemiddelde snelheid, hoe vlotter een loods kan varen in het beschouwde alternatief. Dit gaat meestal ook samen met minder risico's op aanvaringen. De gemiddelde snelheid is met andere woorden een maat voor de moeilijkheid waarmee men binnen een alternatief kan varen.

Sleepboothulp

Voor zowel de voorste sleepboot (sleepboot 3) als de achterste sleepboot (sleepboot 4) werd de oppervlakte onder de stuwkrachtgrafiek berekend. Het resultaat zegt iets over de hoeveelheid sleepboothulp die noodzakelijk was binnen dit deeltraject en is met andere woorden ook een rechtstreekse link met het brandstofgebruik van een sleepboot.

Er werd geopteerd om het resultaat uit te drukken in ton*min waardoor de lezer ook eenvoudig de gemiddelde stuwkracht kan berekenen, door deling door de tijd (uitvoeringstijd T2 - T1).

De parameter wordt verder stuwkracht_impuls genoemd met $F(t)$ [ton] de stuwkracht van de sleepboot:

$$
\text { stuwkracht_impuls }=\sum_{T 1}^{T 2} F(t) \Delta t
$$

De parameter zegt niet onmiddellijk iets over de sleepbootreserves. De stuwkracht_impuls laat echter wel toe om simulaties onderling op relatief eenvoudige wijze kwalitatief met elkaar te vergelijken. Hoe groter de stuwkracht_impuls, hoe meer de sleepboot ingezet werd. Een grotere inzet van de sleepboten vergt doorgaans meer en langere concentratie van loodsen en kapiteins;

Boegschroef

Ook voor de boegschroef werd de boegschroef_impuls berekend, uitgedrukt in ton*min en dit op basis van de laterale kracht van de boegschroef $Y_{B S}$ [ton]:

$$
\text { boegschroef_impuls }=\sum_{T 1}^{T 2} Y_{B S}(t) \Delta t
$$

Net zoals de stuwkracht_impuls geeft ook de boegschroef_impuls aan hoeveel de boegschroef langsheen het traject gebruikt werd. Hoe groter de boegschroef_impuls, hoe meer de loods het schip met de boegschroef langsheen het traject bijstuurde.

Afstand tot harde constructie

Langs het deeltraject werd op elk tijdstip t de minimale afstand tot de harde constructie bepaald. Noem het punt op het schip dat op t de minimale afstand bepaalt het 'minimale-scheeps-punt' en het punt op de constructie op tijdstip t het 'minimale-contour-punt'. De harde constructie stemt overeen met de contour
van de omgeving en wordt in Figuur 2 tot en met Figuur 7 voorgesteld door de zwarte lijn. Op elk tijdstip wordt dus een minimaal-scheeps-punt en een minimaal-contour-punt bepaald.

In Figuur 14 wordt als voorbeeld het deeltraject van SIM225_Carcockesite_004 voorgesteld. De onderste figuur toont op de contour van de omgeving het minimale-contour-punt. Merk op dat er 'sprongen' voorkomen bij de voostelling van dit punt. Het is immers mogelijk dat op tijdstip t de minimale afstand tussen schip en omgeving bepaald wordt door de afstand tussen hek en de kaaimuur. Op tijdstip $t+1$ is de minimale afstand bijvoorbeeld de afstand tussen boeg en een punt verder op de kaaimuur. Op die manier bekomt men 'sprongen' in de voorstelling van het minimale-contour-punt. Er werd gekozen voor deze methodiek omdat zo vanuit 'het scheepsstandpunt' een tijdspercentage berekend kan worden.

Het minimale-contour-punt krijgt een kleur naargelang de minimale afstand. Na berekening van de minimale afstand langsheen het traject, en rekening houdend met afstandsintervallen, werden percentages uitgerekend. Deze percentages geven aan hoeveel procent van de uitvoeringstijd de minimale afstand zich in een zeker interval bevond. Voor SIM225_Carcockesite_004 geldt bijvoorbeeld dat:

- 34% van de tijd, minimale afstand $>=80 \mathrm{~m}$
- 12% van de tijd, $40<=$ minimale afstand $<80 \mathrm{~m}$
- 15% van de tijd, $20<=$ minimale afstand $<40 \mathrm{~m}$
- 39% van de tijd, < 20 m

De parameters hierboven besproken, worden voor elke simulatie berekend en vervolgens gebundeld per alternatief. Vervolgens wordt elke parameter genormeerd op basis van het 'best scorend alternatief'. Voor volgende parameters komt het best scorend alternatief overeen met de kleinst berekende waarde:

- Tijden: hoe korter, hoe vlotter;
- Stuwkracht_impuls: hoe kleiner, hoe kleiner het totale sleepbootgebruik;
- Boegschroef_impuls: hoe kleiner, hoe kleiner het totale boegschroefgebruik;

Voor de snelheid geldt dat hoe groter de gemiddelde snelheid, hoe sneller door een alternatief gevaren wordt en dit gaat samen met een vlotter manoeuvre. De manier van normeren wordt in hoofdstuk 4 Resultaten verder toegelicht.

3.3.5 Ontmoetingen

Een bespreking van simulaties waarbij ontmoetingen uitgevoerd werden, volgt aan de hand van de vaarbaanplots en minimale afstanden tussen schepen.

Figuur 14-SIM225_Carcockesite_004, voorbeeld berekening afstand tot constructie

Boven: voorstelling traject met behulp van kmz-bestand
Onder: aAnduiding minimale-contour-punt. Kleur op basis van afstand

4 Resultaten

In voorliggend hoofdstuk wordt met behulp van de berekende parameters een kwalitatieve vergelijking tussen de verschillende alternatieven gemaakt. Tabel 11 toont het aantal uitgevoerde simulaties bij ZW5 voor de niet-gekoppelde simulaties (dus zonder ontmoetingen).

Merk op dat bij enkele alternatieven geen in- of uitvaart gesimuleerd werd. Uitvaren in de voorhaven in Visart en VisartOost lijken zeer sterk op elkaar. Het invarende manoeuvre in VisartOost in de achterhaven is ook sterk gelijkend aan het invarende manoeuvre in Visart in de achterhaven. Visart zou hierbij (op basis van de parameters) iets slechter scoren vermits de afstanden tot kaaien in de achterhaven kleiner zijn. Het invarende en uitvarende manoeuvre voor VandammeOost en VandammeWest in de voorhaven zijn ook sterk gelijkaardig.

Tabel 11 - Aantal simulaties bij ZW5

	Voorhaven (VH)		Achterhaven (AH)	
	In	Uit	In	Uit
Visart	2	2	2	2
VisartOost	2	0	0	2
Carcockesite	2	2	2	2
VandammeOost	0	2	2	1
VandammeWest	2	0	2	2
Verbindingsdok	2	1	2	2

Om het ontbreken van simulaties voor bepaalde condities bij een alternatief te ondervangen en zo een volledige beoordeling te kunnen geven van alle manoeuvres naar en van het alternatief, werden voor de alternatieven Visart en VisartOost enerzijds en voor VandammeOost en VandammeWest anderzijds data overgenomen. Er werd namelijk vastgesteld dat bijvoorbeeld door het ontbreken van simulaties bij invaart in de voorhaven bij VandammeOost de parameter sleepboothulp achter zeer lage waarden scoorde omdat de conditie met afremmende achtersleepboot niet was gesimuleerd. Een correctie drong zich op waarbij de berekende parameters werden overgenomen van het gelijkaardig alternatief. Meer specifiek werden de parameters van de volgende alternatieven en condities identiek ondersteld:

- VisartOost VH Uit = Visart VH Uit
- VisartOost AH In = Visart AH In
- VandammeOost VH In = VandammeWest VH In
- VandammeWest VH Uit = VandammeOost VH Uit

4.1 Evaluatie loodsen en sleepbootkapiteins

Tabel 12 en Tabel 13 tonen de gemiddelde beoordelingscijfers van loodsen voor respectievelijk moeilijkheid en reserves.

Een gemiddelde score boven 3 voor moeilijkheid / concentratie wil zeggen dat het manoeuvre moeilijk tot onuitvoerbaar is. Een gemiddelde score voor reserve hoger dan 3 is er enkel voor het alternatief Visart wat er op wijst dat de loodsen de reserves bijna in alle alternatieven (gemiddeld) als nog voldoende schatten. Merk op dat dit bij ZW6 niet meer het geval is.

Op basis van deze cijfers werd een genormeerde rangorde opgesteld welk ook in de tabel opgenomen wordt. De waarden worden gedeeld door de beste (kleinste) waarde. Het alternatief met als genormeerde waarde 1, is dus met andere woorden het beste alternatief op basis van het beschouwde criterium. Hieruit volgt dat zowel wat betreft de moeilijkheid / concentratie als wat betreft de reserves VandammeWest het best scoort. Dit alternatief wordt gevolgd door VandammeOost die op zijn beurt gevolgd wordt door Verbindingsdok. De westelijke alternatieven scoren het slechtst met Visart als slechtste alternatief. VisartOost en Carcockesite scoren gelijkaardig. Hierbij geldt als belangrijke opmerking dat in VisartOost in de achterhaven het kanaal 130 m breed was daar waar de breedte slechts 90 m bedroeg in het alternatief Visart.

Tabel 12-Moeilijkheid / concentratie

	ZW3	ZW5	ZW6	Normering voor ZW5
Visart		3.9		1.55
VisartOost		3.6		1.45
Carcockesite		3.4		1.35
VandammeOost	$\mathbf{2 . 3}$	2.8	4	1.10
VandammeWest		$\mathbf{2 . 5}$		1.00
Verbindingsdok		3.1	4	1.25

Tabel 13 - Reserve

	ZW3	ZW5	ZW6	Normering voor ZW5
Visart		3.1		1.67
VisartOost		2.9		1.53
Carcockesite		2.9		1.53
VandammeOost	1.8	2.0	5	1.07
VandammeWest		1.9		1.00
Verbindingsdok		2.4	5	1.27

4.2 Parameters

De resultaten van de parameters per simulatie, berekend volgens definitie in §3.3.4, worden gebundeld per scenario. Er wordt een onderscheid gemaakt op basis van het alternatief, de voor- en de achterhaven en de vaarrichting (In of Uit). Gemiddelden werden bepaald en de resultaten hiervan worden hieronder besproken aan de hand van figuren. De voorgestelde data worden ook steeds in een tabel onder de figuur opgenomen.

Links op de figuren worden de westelijke alternatieven getoond, rechts de oostelijke.
Net zoals in §4.1 worden in deze paragraaf geen gekoppelde simulaties beschouwd en werden enkel simulaties met ZW5 meegenomen in de berekening.

4.2.1 Uitvoeringstijd

Figuur 15 en Tabel 14 tonen de gemiddelde simulatietijden binnen het deeltraject gedefinieerd volgens de snijlijnen uit Tabel 10.

De simulaties via de westelijke alternatieven duren beduidend langer dan deze via de oostelijke alternatieven. Zowel voor het alternatief Carcockesite als het alternatief Verbindingsdok is de uitvoeringstijd in de voorhaven veel langer dan deze in de achterhaven. Dit heeft uiteraard te maken met het langer traject dat afgelegd dient te worden in de voorhaven.

Figuur 15-Gemiddelde uitvoeringstijd [min]

De rangorde op basis van een genormeerde uitvoeringstijd toont aan dat VandammeOost en VandammeWest het best en gelijkaardig scoren qua uitvoeringstijd. Deze alternatieven worden gevolgd door het Verbindingsdok waarna de drie westelijke alternatieven ook op ongeveer gelijke hoogte volgen.

Tabel 14-Gemiddelde uitvoeringstijd [min] (waarden afgerond tot op één minuut)

			In / Uit	$\mathrm{VH} / \mathrm{AH}$	Alternatief	Normering
Visart	VH	In	23		20	1.69
		Uit	14			
	AH	In	21	22		
		Uit	23			
VisartOost	VH	In	22	18	20	1.65
		Uit	14			
	AH	In	21	21		
		Uit	22			
Carcockesite	VH	In	30	28	19	1.63
		Uit	26			
	AH	In	9	11		
		Uit	13			
VandammeOost	VH	In	15	12	13	1.06
		Uit	8			
	AH	In	13	14		
		Uit	15			
VandammeWest	VH	In	15	12	12	1.00
		Uit	8			
	AH	In	11	12		
		Uit	14			
Verbindingsdok	VH	In	26	23	15	1.27
		Uit	19			
	AH	In	5	8		
		Uit	10			

4.2.2 Gemiddelde snelheid

Figuur 15 en Tabel 14 tonen de gemiddelde snelheden binnen het deeltraject gedefinieerd volgens de snijlijnen uit Tabel 10.

Bij de oostelijke alternatieven is de gemiddelde snelheid hoger dan bij de westelijke. Merk hierbij verder op dat de snelheid in de voorhaven voor Verbindingsdok iets hoger is dan deze bij het alternatief Carcockesite in de voorhaven. De gemiddelde snelheid voor alternatief Verbindingsdok, uitvarend in de achterhaven is laag. Een zeer kort traject tussen snijlijn en sluis is hier de oorzaak van.

Met de normering is er voor gezorgd dat het alternatief met de grootste gemiddelde snelheid de waarde 1 krijgt, de tragere alternatieven bezitten een grotere waarde. Een rangorde werd opgesteld door de maximale waarde (4.96 knoop) steeds te delen door de berekende waarde.

Figuur 16-Gemiddelde snelheid [knoop]

De rangorde op basis van een genormeerde gemiddelde snelheid toont aan dat VandammeOost en VandammeWest het best en gelijkaardig scoren. Tussen de overblijvende vier alternatieven is er gemiddeld gezien (voorhaven en achterhaven en in- en uitvarend) weinig verschil in de gemiddelde snelheid.

			In / Uit	VH/ AH	Alternatief	Normering
Visart	VH	In	3.15		3.87	1.28
		Uit	5.22			
	AH	In	3.64	3.55		
		Uit	3.45			
VisartOost	VH	In	3.34	4.28	3.92	1.26
		Uit	5.22			
	AH	In	3.64	3.56		
		Uit	3.47			
Carcockesite	VH	In	3.81	4.12	3.90	1.27
		Uit	4.43			
	AH	In	4.21	3.68		
		Uit	3.15			
VandammeOost	VH	In	3.56		4.90	1.01
		Uit	6.85			
	AH	In	4.98	4.60		
		Uit	4.21			
VandammeWest	VH	In	3.56	5.21	4.96	1.00
		Uit	6.85			
	AH	In	5.10	4.71		
		Uit	4.31			
Verbindingsdok	VH	In	3.98	4.85	3.73	1.33
		Uit	5.71			
	AH	In	3.69	2.62		
		Uit	1.55			

4.2.3 Sleepboothulp

Sleepboot achteraan

Figuur 17 en Tabel 16 tonen de resultaten van de gemiddelde stuwkracht_impuls voor de sleepboot achteraan. De stuwkracht_impuls geeft een idee van de hoeveelheid sleepboothulp die nodig was over het beschouwde deeltraject. Deze zal dezelfde zijn voor een simulatie waarbij de sleepboot 5 minuten 40 ton trekt als de simulatie waarbij de sleepboot 10 minuten 20 ton trekt.

Wanneer de sleepboot achteraan gebruikt wordt, dan is dit veelal om de vaarsnelheid te controleren. De loods kan dan de machine intensiever gebruiken (zonder snelheidstoename) om zo de roereffectiviteit te vergroten. Het controleren van de snelheid met een sleepboot is sterk afhankelijk van de vaarrichting. Een invarend manoeuvre in de voorhaven vergt immers dat snelheid afgebouwd wordt. Bij een uitvarend manoeuvre in de voorhaven kan de snelheid in de meeste alternatieven opgebouwd worden. Bij de alternatieven met een kanaal (Carcockesite en Verbindingsdok) werd de sleepboot achteraan bij het buitenvaren in de voorhaven veel meer gebruikt dan bij de andere alternatieven.

Figuur 17-Gemiddelde stuwkracht_impuls sleepboot achteraan [ton*min]

Gemiddeld merkt men op dat de simulaties via de westelijke alternatieven iets meer sleepboothulp achteraan vergen dan de simulaties via de oostelijke alternatieven. VandammeOost en VandammeWest worden gevolgd door Verbindingsdok waarna Carcockesite en VisartOost op gelijke hoogte volgen. Visart scoort het slechts wat betreft het gebruik van de achterste sleepboot.

Tabel 16-Gemiddelde stuwkracht_impuls sleepboot achteraan [ton*min]

			In / Uit	$\mathrm{VH} / \mathrm{AH}$	Alternatief	Normering
Visart	VH	In	558		458	1.89
		Uit	66			
	AH	In	639	605		
		Uit	570			
VisartOost	VH	In	368	217	391	1.61
		Uit	66			
	AH	In	639	566		
		Uit	492			
Carcockesite	VH	In	572	531	396	1.63
		Uit	490			
	AH	In	199	261		
		Uit	324			
VandammeOost	VH	In	433		243	1.00
		Uit	26			
	AH	In	161	256		
		Uit	351			
VandammeWest	VH	In	433	230	243	1.00
		Uit	26			
	AH	In	104	256		
		Uit	407			
Verbindingsdok	VH	In	405	488	336	1.38
		Uit	571			
	AH	In	33	183		
		Uit				

Sleepboot vooraan

Figuur 18 en Tabel 17 tonen de resultaten van de gemiddelde stuwkracht_impuls voor de sleepboot vooraan.

De voorste sleepboot wordt over het algemeen, net zoals de boegschroef, gebruikt om de boeg van het schip te sturen. Een grote stuwkracht_impuls geeft dus aan dat veel correcties of assistentie nodig was langsheen het traject.

Figuur 18-Gemiddelde stuwkracht _impuls sleepboot vooraan [ton*min]

Ook hier merkt men op dat gemiddeld de westelijke alternatieven in grotere waarden resulteren dan de oostelijke. Daarnaast is de stuwkracht_impuls globaal gezien voor de voorste sleepboot veel kleiner dan voor de achterste. Dit is te wijten aan de specifieke functie van een voor- en achtersleepboot en de aanwezigheid van een boegschroef waardoor een voorsleepboot eerder additioneel gebruikt wordt.

Belangrijk is het relatieve grote verschil in gebruik van de voorste sleepboot. In het alternatief VisarOost werd gemiddeld de sleepboot vooraan 186% meer gebruikt dan in het alternatief VandammeWest. Bij het gebruik van de achterste sleepboot lagen de extrema niet zo ver uit elkaar, het maximaal relatief verschil bedroeg daar 89%. Het gebruik van de voorste sleepboot (en ook boegschroef) zijn een goede maat voor de moeilijkheid van de manoeuvres. Ze weerspiegelen immers de mate waarmee de boeg gestuurd dient te worden. Bij weinig ruimte is sturen en corrigeren met de sleepboot vooraan en / of de boegschroef zeer belangrijk.

Tabel 17-Gemiddelde stuwkracht_impuls sleepboot vooraan [ton*min]

			In / Uit	$\mathrm{VH} / \mathrm{AH}$	Alternatief	Normering
Visart	VH	In	202		132	2.54
		Uit	1			
	AH	In	274	162		
		Uit	49			
VisartOost	VH	In	51	26	148	2.86
		Uit	1			
	AH	In	274	271		
		Uit	268			
Carcockesite	VH	In	89	62	141	2.72
		Uit	35			
	AH	In	361	220		
		Uit	79			
VandammeOost	VH	In	109	85	79	1.52
		Uit	60			
	AH	In	138	73		
		Uit	9			
VandammeWest	VH	In	109	85	52	1.00
		Uit	60			
	AH	In	18	19		
		Uit	20			
Verbindingsdok	VH	In	102	72	112	2.17
		Uit	42			
	AH	In	209	153		
		Uit	96			

4.2.4 Boegschroef

Figuur 19 en Tabel 18 tonen de resultaten van de gemiddelde boegschroef_impuls. De boegschroef wordt gebruikt om de boeg dwars te contoleren of te bewegen.

Figuur 19-Gemiddelde boegschroef_impuls [ton*min]

Het maximaal relatief verschil (tussen VandammeOost en Visart) bedraagt 135\%. Ook hier dezelfde conclusie, de boegschroef werd bij de westelijke alternatieven in totaal meer gebruikt dan bij de oostelijke alternatieven. Het verschil in gemiddeld gebruik van de boegschroef (zie normering) tussen de westelijke alternatieven onderling is eerder klein. Verbindingsdok scoort net iets slechter wat het gebruik van boegschroef betreft ten opzichte van VandammeOost en VandammeWest.

			In / Uit	$\mathrm{VH} / \mathrm{AH}$	Alternatief	Normering
Visart	VH	In	62		76	2.35
		Uit	33			
	AH	In	108	105		
		Uit	102			
VisartOost	VH	In	58	45	74	2.27
		Uit	33			
	AH	In	108	102		
		Uit	95			
Carcockesite	VH	In	180		75	2.30
		Uit	22			
	AH	In	60	48		
		Uit	36			
VandammeOost	VH	In	57	42	32	1.00
		Uit	28			
	AH	In	29	23		
		Uit	16			
VandammeWest	VH	In	57	42	41	1.25
		Uit	28			
	AH	In	26	39		
		Uit	52			
Verbindingsdok	VH	In	78	51	66	2.02
		Uit	25			
	AH	In	52	80		
		Uit	108			

4.2.5 Afstand tot constructie

In Figuur 20 en Tabel 19 wordt procentueel voorgesteld hoe de minimale afstanden langsheen het traject voor de verschillende alternatieven zich verhouden.

Bij volgende (deel)alternatieven was langsheen het traject de minimale afstand gemiddeld in meer dan 30\% van de uitvoeringstijd kleiner dan een scheepsbreedte:

- Visart AH (52\%)
- VisartOost AH (53\%)
- Carcockesite VH (37\%)
- Verbindingsdok VH (35\%)

In het alternatief Verbindingsdok werd het kanaal, ter vervanging van de huidige P. Vandammesluis, ingetekend met een breedte van 130 m . Indien een schip met breedte 40 m centrisch en parallel aan de kaaimuur door het kanaal vaart, dan zal er zowel aan bakboord- als stuurboordzijde nog net een scheepsbreedte over zijn.

In het alternatief Carcockesite werd het kanaal, ter vervanging van de huidige Visartsluis, ingetekend met breedte 85 m . Bij het varen door een kanaal van 85 m zal de minimale afstand met een schip met breedte 40 m in vele gevallen kleiner zijn dan 20 m .

Hoe langer de periode tijdens een manoeuvre dat de afstand tot een harde constructie klein is, hoe langer de concentratie van de loods(en) en sleepbootkapitein(s) op de proef gesteld worden. Daarnaast geldt (meestal) dat hoe kleiner de marges zijn hoe groter de risico's op botsingen worden. Deze kleinere marges impliceren ook een zorgvuldigere inzet van sleepboten, gebruik van boegschroef, roer en machine.

Een normering wordt uitgevoerd op basis van het criterium 'afstand kleiner dan een scheepsbreedte' ($<40 \mathrm{~m}$). Door loodsen worden afstanden kleiner dan een scheepsbreedte als minder comfortabel of veilig beschouwd. De risico's op een aanvaring nemen toe bij afstanden kleiner dan een scheepsbreedte. Om een kwalitatieve vergelijking mogelijk te maken werd daarom ook een scheepsbreedte genomen als afstand voor de normering. Tabel 19 toont aan dat op basis van dit gekozen criterium VandammeOost het best scoort. Dit alternatief wordt gevolgd door VandammeWest, Verbindingsdok en Carcockesite. Hierna volgen Visart en VisartOost.

	$\begin{aligned} & \frac{ \pm}{\pi} \\ & \stackrel{n}{5} \end{aligned}$					Verbindingsdok
<20 m	19.1	17.2	16.0	5.0	5.3	2.0
[20,40[m	9.1	12.7	6.8	5.0	10.0	18.7
[40,80[m	23.4	17.1	20.8	9.1	25.5	12.9
> $=80 \mathrm{~m}$	48.4	53.0	56.4	80.9	59.2	66.4
\% < 40 m	28.2	29.9	22.8	10.0	15.4	20.6
Normering op basis van \% < 40 m	2.81	2.98	2.27	1.00	1.53	2.06

4.2.6 Samenvatting parameters

Tabel 20 toont de rangorde in functie van de parameters voor de zes alternatieven met in de laatste kolom een som die zicht geeft op de globale rangorde, berekend aan de hand van de beschreven parameters.

Tabel 20 - Orde op basis van berekende parameters

			Impuls				SOM
Visart	1.69	1.28	1.89	2.54	2.35	2.81	12.56
VisartOost	1.65	1.26	1.61	2.86	2.27	2.98	12.64
Carcockesite	1.63	1.27	1.63	2.72	2.30	2.27	11.82
VandammeOost	1.06	1.01	1.00	1.52	1.00	1.00	6.59
VandammeWest	1.00	1.00	1.00	1.00	1.25	1.53	6.78
Verbindingsdok	1.27	1.33	1.38	2.17	2.02	2.06	10.23

Op basis van de analyse van de geselecteerde parameters volgt dat VandammeOost en VandammeWest best scoren, gevolgd door Verbindingsdok. Carcockesite doet het nog net iets beter dan Visart en VisartOost.

4.3 Ontmoetingen

Tabel 21 toont een overzicht van de gekoppelde simulaties. Die simulaties waarbij schepen elkaar ontmoetten werden uitgevoerd met twee simulatoren, verder genoemd de master en de slave. De tabel toont de locatie (voorhaven VH / achterhaven AH), de vaarrichting van de master, de windconditie en de afmetingen van beide schepen. Daarnaast wordt ook de bestandsnaam gegeven welke functie is van de simulator $X(X=$ SIM225 of $X=$ SIM360). SIM360 was steeds de master simulator. In de kolom 'Focus / ontmoeting' wordt kort aangegeven waar de ontmoeting plaatsvond.

Tabel 21 - Overzicht uitgevoerde gekoppelde simulaties

Nr	VH / AH	Richting master	Wind	Master	Slave	Simulatie	Focus / ontmoeting
35	VH	Uit	ZW5	265×40	265×40	SIMX_Verbindingsdok_gek_002	Tussen kanaal en sluis
36	AH	In	ZW3	265×40	162×25	SIMX_VisartOost_gek_001	Achterhaven (130 m breed)
37	VH	Uit	ZW5	265×40	265×40	SIMX_Visart_gek_001	Zwaaiplaats 2
38	AH	Uit	ZW5	265×40	265×40	SIMX_VandammeOost_gek_001	Verbindingsdok
39	VH	Uit	ZW5	265×40	162×25	SIMX_Verbindingsdok_gek_003	Kanaal
40	VH	Uit	ZW5	265×40	265×40	SIMX_VandammeWest_gek_002	Voor de sluis

In de meeste simulaties ontmoetten twee dezelfde car-carriers elkaar, namelijk het simulatieschip met afmetingen $265 \mathrm{~m} \times 40 \mathrm{~m}$. In simulaties 36 en 39 werden ontmoetingen getest tussen hetzelfde schip en een kleinere RoRo ferry met afmetingen $162 \mathrm{~m} \times 25.2 \mathrm{~m}$ (Clementine in simulatordatabase).

4.3.1 Simulatie 35: Verbindingsdok VH

Bij ZW5 werd een ontmoeting in het Verbindingsdok gesimuleerd, tussen de doorsteek en het sluizencomplex (zie Figuur 21). Het inkomende schip bevond zich redelijk oostelijk in het kanaal waardoor het aangewezen was om elkaar stuurboord-stuurboord te kruisen.

Figuur 22 toont de minimale afstanden tot de harde constructie voor zowel invarend (links) als uitvarend (rechts) schip. De afstand tot de muur in de doorsteek werd voor het invarende schip kleiner dan een halve scheepsbreedte. Tijdens de ontmoeting bedroeg de minimale afstand tussen de schepen 60 m , of anderhalve scheepsbreedte.

Niettegenstaande de relatief kleine afstand tot de kaai in de doorsteek, achtten de loodsen dit manoeuvre in realiteit uitvoerbaar. Alertheid is uiteraard noodzakelijk want de beschikbare marges zijn niet groot. Voor beide schepen was er nog voldoende reserve wat betreft sleepbootgebruik, machine, roer en boegschroef.

Figuur 22-Simulatie 35 - Minimale afstanden tot kaai - Links invarend; Rechts: uitvarend

4.3.2 Simulatie 36: VisartOost AH

Bij ZW3 werd er in het alternatief VisartOost een ontmoeting in de achterhaven gesimuleerd tussen een car-carrier en een tweeschroevige RoRo ferry (zie Figuur 23). De loodsen kozen voor ZW3 omdat men inschatte dat ZW5 zeer lastig zou worden. De schepen raakten de kaai niet maar de afstanden tot de muren werden klein. Figuur 24 toont dat de minimale afstand, zeker voor het invarend schip, in het merendeel van de tijd kleiner was dan een halve scheepsbreedte. De minimale passeerafstand tussen de schepen bedroeg 25.6 m of ongeveer de scheepsbreedte van het kleinste schip. Het manoeuvre vergde een zeer hoge concentratie van begin tot het einde. Ontmoetingen worden hier ten sterkste afgeraden zelfs bij ZW3.

Figuur 23 - Simulatie 36 - Links: $0^{\prime}-17^{\prime}$; Rechts: $17^{\prime}-25^{\prime}$ (SIM360_VisartOost_gek_001.kmz)

Figuur 24 - Simulatie 36 - Minimale afstanden tot kaai - Links invarend; Rechts: uitvarend

Een ontmoeting in de achterhaven op eenzelfde locatie zou in het alternatief Visart nog slechter scoren vermits de kanaalbreedte in de achterhaven maar ongeveer 90 m is.

4.3.3 Simulatie 37: Visart VH

Bij ZW5 werd er in het alternatief Visart een ontmoeting in de voorhaven gesimuleerd tussen twee schepen met lengte 265 m (zie Figuur 25). De ontmoeting vond plaats ter hoogte van zwaaiplaats 2 . Afstanden tot de harde constructies bleven tijdens de simulatie voor beide schepen steeds voldoende (zie Figuur 26). De minimale passeerafstand tussen de schepen bedroeg 70 m .

Het afgemeerd schip (met breedte 42 m) aan CHZ werd op meer dan een scheepsbreedte gepasseerd wat voldoende is. Met een afgemeerd schip aan CHZ wordt het sterk ontraden om te kruisen tussen het afgemeerd schip en de sluis. Het invarend schip heeft immers voldoende tijd en ruimte nodig om op te lijnen naar de sluis.

Figuur 25 - Simulatie 37 - Links: 0' - 14'; Rechts: 14' - 24^{\prime} (SIM360_Visart_gek_001.kmz)

Figuur 26-Simulatie 37 - Minimale afstanden tot kaai - Links: uitvarend; Rechts: invarend

4.3.4 Simulatie 38: VandammeOost AH

Met ZW5 werd een ontmoeting in het alternatief VandammeOost in de achterhaven uitgevoerd (zie Figuur 27). De afstanden tot de muren bleven steeds meer dan 40 m (zie Figuur 28). Het manoeuvre is zeer gelijkaardig aan de manoeuvres die de loodsen vandaag de dag al in de achterhaven uitvoeren en kan dus met andere woorden voor de achterhaven een beetje als de referentie aanzien worden.

Figuur 27-Simulatie 38 - Links: 0' - 13'; Rechts: 13' - 25' (SIM360_VandammeOost_gek_001.kmz)

Figuur 28 - Simulatie 38 - Minimale afstanden tot kaai - Links: invarend; Rechts: uitvarend

4.3.5 Simulatie 39: Verbindingsdok VH

Simulatie 39 toont een ontmoeting in het kanaal van het alternatief Verbindingsdok tussen een car-carrier en een RoRo ferry. De minimale passeerafstand tussen de schepen bedroeg 30 m . De minimale afstanden tot de harde constructies waren voor het uitgaande en ingaande schip 4 m respectievelijk 12 m . De loodsen vonden dit manoeuvre doenbaar op voorwaarde dat er bij de car-carrier steeds voor- en achteraan een sleepboot vastgemaakt wordt. Voor de RoRo ferry zal in veel gevallen één sleepboot (achteraan) volstaan. Niettegenstaande het feit dat de loodsen dit als doenbaar achtten, wordt sterk geadviseerd om hier niet te kruisen. Afstanden van minder dan een halve scheepsbreedte zijn klein.

Figuur 29 - Simulatie 39 - Links: $0^{\prime}-15^{\prime}$; Rechts: 15' - 23^{\prime} (SIM360_Verbindingsdok_gek_003.kmz)

Figuur 30-Simulatie 39 - Minimale afstanden tot kaai - Links: uitvarend; Rechts: invarend

4.3.6 Simulatie 40: VandammeWest VH

Simulatie 40 toont een ontmoeting bij ZW5 in de voorhaven van alternatief VandammeWest. De minimale afstand tussen de (varende) schepen bedroeg 63 m . Het invarende schip stuurde een beetje op richting het afgemeerde cruiseschip wat mogelijks voor het cruiseschip (de bemanning) een ietwat vreemd / onaangenaam gevoel kan geven. De minimale afstand tussen de inkomende car-carrier en het afgemeerde cruiseschip was 45 m . Dit is echter niet onoverkomelijk en gebeurt vandaag de dag ook. Het afgemeerde schip zal niet dichter bij de sluis afgemeerd kunnen worden. Het uitvarende schip liet de voorste sleepboot iets te snel los. De ontmoeting in de voorhaven vormt geen probleem binnen Dit alternatief.

Figuur 31 - Simulatie 40 - Links: $0^{\prime}-12^{\prime}$; Rechts: $12^{\prime}-19^{\prime}$ (SIM360_VandammeWest_gek_002.kmz)

Figuur 32-Simulatie 40 - Minimale afstanden tot kaai - Links: uitvarend; Rechts: invarend

4.3.7 Samenvatting

Niet alle combinaties van ontmoetingen werden getoetst door middel van simulaties. Dit zou tot zéér veel simulaties leiden. Door de uitvoering van enkele simulaties kan echter wel een kwalitatieve beoordeling opgesteld worden (zie Tabel 21). Deze beoordeling volgt dus niet uit berekende parameters maar wel na het doortrekken van enkele conclusies uit de simulaties.

Een ontmoeting bij ZW3 in het alternatief VisartOost in de achterhaven, tussen een car-carrier en een RoRo ferry, toont aan dat de ruimte zeer beperkt is. Het alternatief Visart is in de achterhaven nog nauwer. In beide alternatieven is het zeer moeilijk om te kruisen tussen het Verbindingsdok en de sluis en is ontmoeten in het Verbindingsdok sterk aangewezen of noodzakelijk. Hetzelfde geldt voor de alternatieven Verbindingsdok en Carcockesite waarbij in de achterhaven ook gekruist dient te worden in het Verbindingsdok (deel oost - west). De alternatieven VandammeOost en VandammeWest krijgen een gelijkaardige beste kwalitatieve beoordeling voor ontmoetingen omdat hierbij even veel of meer ruimte is dan in het huidige alternatief P. Vandammesluis.

In de voorhaven scoort Carcockesite het slechtste als gevolg van het kanaal (doorsteek). Visart en VisartOost kan men op dezelfde hoogte rangschikken. Ontmoetingen in VandammeOost en VandammeWest zijn ook gelijkaardig en krijgen opnieuw kwalitatief de beste beoordeling. Het kanaal in het alternatief Verbindingsdok maakt het voor de uitvoering van ontmoetingen ook lastiger waarbij uit de simulaties volgt dat ontmoeten tussen de sluizen en de doorsteek mogelijk is. In het kanaal zelf kunnen kleinere schepen elkaar ook kruisen bij gematigde windcondities. Een simulatie toonde aan dat ontmoeten tussen het kanaal en het sluizencomplex mogelijk was. Indien de sluis noordelijk ingetekend wordt dan zal ontmoeten moeilijker worden of zelfs niet meer mogelijk zijn.

4.4 Bedenkingen en commentaar van loodsen en kapiteins

Tijdens de simulaties werd door zowel loodsen als kapiteins bedenkingen / commentaar geformuleerd op de verschillende alternatieven. Een samenvatting van deze opmerkingen volgt in deze paragraaf, eerst alternatief per alternatief, later algemeen.

4.4.1 Bedenkingen per alternatief

Visart
Met afgemeerd schip aan CHZ wordt de ruimte tussen de schepen zeer krap, $n l$. minder dan een scheepsbreedte. Dit is inderdaad het geval ter hoogte van boei Z10. De afstand tussen de kaai en boei Z10 is immers maar $+/-190 \mathrm{~m}$ wat met een afgemeerd schip met breedte 40 m en een varend schip met breedte 40 m nog 110 m ruimte geeft. 110 m lijkt nog ruim maar op deze locatie dient het schip te bochten wat een overbreedte vergt. Hetzelfde geldt voor de alternatieven VisartOost en Carcockesite.

Uitvoeringstijd is veel slechter dan oostelijke alternatieven. Met ander verkeer wordt dit een lastig alternatief.
Je zit inderdaad als het ware 'gevangen' voor CHZ. Als je moet wachten dan zit het schip als het ware 'gevangen voor CHZ'. Wachten gebeurt dus beter verder zeewaarts. Bij de oostelijke alternatieven heb je meer ruimte om te manoeuvreren met slepers voor de sluis.

De jachthaven zal ook moeten wachten bij een aankomend schip.

VisartOost

Geen specifieke opmerkingen, gelijkaardig verhaal aan het verhaal voor het alternatief Visart.

Carcockesite

Om de vlotheid te waarborgen is het aangewezen om aan boei $Z 10$ te baggeren. In vergelijking met alternatief Visart en VisartOost heb je iets meer tijd om op te lijnen. Je zal minder geneigd zijn om volledig op te lijnen voor de doorsteek vermits je de doorsteek onder een hoekje kan aanvatten. Doorsteek van 85 m is smal maar doenbaar (bij de geteste windconditie).

Snelheid in doorsteek van 3 à 4 knoop lijkt ideaal.

VandammeOost

Mooie aan dit alternatief is de virtuele lijn die gemaakt kan worden bij het oplijnen naar de sluis tussen sluismuur en het einde van de oostelijke strekdam. Dit geeft een mooi beeld om te aligneren.

Steiger voor Cobelfret (in de voorhaven) bij VandammeWest en VandammeOost lijkt geen goed idee. Bij het buitenvaren bij ZW7 kan het gevaarlijk worden. De geschiedenis toont aan dat er af en toe tegen de Hermeskaai 'gerust' wordt. Als mogelijke oplossing zou men palen kunnen plaatsen waartegen een schip kan rusten. Dit resulteert dan weer in ruimtebeperking voor het manoeuvre naar de steiger. Vooral wanneer er sleepboten nodig zijn, is dit mogelijks lastig.

Het 'probleem' met het afgemeerde schip werd echter niet door alle loodsen als een echt probleem gezien.

VandammeWest

Invaren, opsturen richting cruiseschepen zal misschien wat vreemd aanvoelen in het begin. Niet alleen voor de loods maar ook voor de bemanning en passagiers van het cruiseschip.

Bij het uitvaren, lijkt de ruimte op linkeroever net voorbij de sluis niet zo ruim om met sleepboten te trekken.
Men zal best ook nagaan hoe ver of hoe dicht men het cruiseschip kan afmeren bij de sluis.

Verbindingsdok

De steiger van Wallenius, aan rechteroever ter hoogte van de kruising van het Zuidelijk Kanaaldok en het Verbindingsdok zal in dit alternatief bekeken moeten worden.

4.4.2 Algemeen

Een voorkeurscenario is voor loodsen moeilijk te kiezen maar een alternatief met een sluis parallel aan de P. Vandammesluis voelt vertrouwd aan en brengt weinig nautische (extra) risico's met zich mee. Voorligging en oplijnen bij de alternatieven met een sluis parallel aan de P. Vandammesluis zijn gemakkelijk. In de voorhaven kan je al van ver van tevoren oplijnen. De alternatieven met een doorsteek / kanaal brengen steeds extra moeilijkheden met zich mee.

De uitvoering van de oevers met een talud is in zeer veel gevallen geen optie. Indien men hier toch voor opteert, dan dient dit later meer in detail bestudeerd te worden.

De westelijke scenario's hebben in de voorhaven het voordeel dat wanneer men moet wachten (bij zuidwestenwind) het opvarende schip met de kop in de wind kan blijven wachten, bijvoorbeeld ter hoogte van zwaaiplaats 2. Daarnaast kan men bij keuze van een westelijk alternatief mogelijks een eenvoudigere scheepsafwikkeling organiseren waarbij er als het ware 'eenrichtingsverkeer' geïmplementeerd wordt. Er zal dan minder onderlinge hinder tussen de schepen zijn.

Men dient over de Zwakkedammebrug (brug in Verbindingsdok) na te denken. Deze kan bij de westelijke alternatieven (vermoedelijk) niet blijven bestaan. Voor het alternatief Carcockesite dient deze zeker verwijderd te worden.

5 Samenvatting en conclusie

5.1 Samenvatting

Binnen het project Nieuwe Sluis Zeebrugge (NSZ) werden in opdracht van de Afdeling Maritieme Toegang (aMT) met behulp van realtime vaarsimulaties zes sluisalternatieven nautisch gescreend.

Zowel kustloodsen (DABL) als dokloodsen (BRABO) voerden de vaarsimulaties uit, steeds geassisteerd door een sleepbootkapitein van Kotug Smit Towage. De kustloodsen simuleerden in de voorhaven, de dokloodsen in de achterhaven.

Het simulatieschip was een car-carrier waarvan zowel de lengte (265 m) als de breedte (40 m) gelijk zijn aan de maximale lengte en breedte van schepen die vandaag de dag naar de achterhaven van Zeebrugge varen. Deze dimensies werden door MBZ vastgelegd.

In het merendeel van de simulaties werd een wind ZW5 opgelegd, wat een veel voorkomende windconditie is. Het was niet de bedoeling om operationele limieten te bepalen en vandaar dat deze veel voorkomende windconditie een goede keuze was om alternatieven kwalitatief met elkaar te vergelijken. Twee sleepboten met maximale bollard pull van 85 ton assisteerden. Voor meer details over de inputgegevens van de simulaties wordt verwezen naar hoofdstuk 2.

In totaal namen 14 loodsen en twee sleepbootkapiteins deel aan de studie gedurende zes simulatiedagen. Na elke simulatie gaf men cijfermatig feedback over de moeilijkheid / nodige concentratie tijdens het manoeuvre. Daarnaast quoteerde men ook de beschikbare reserves. Voor zowel moeilijkheid als reserves kon men een cijfer 1 tot en met 6 geven waarbij 1 de beste score is (zie Tabel 9 blz. 13).

Grafieken met parameters in functie van de tijd werden voor zowel het simulatieschip als voor de sleepboten gegeneerd. Daarnaast werden ook vaarbaanplots aangemaakt waarop het vaartraject duidelijk zichtbaar is. Deze vaarbaanplots zijn zowel statisch (afbeelding contouren) als dynamisch (KMZ-bestanden, te openen en af te spelen in GoogleEarth ${ }^{\top M}$) beschikbaar.

Uit elke simulatie werd een deel geselecteerd, bruikbaar voor vergelijking van simulaties onderling. Dit deeltraject omvat geen data wanneer het schip zich deels of volledig in de sluis bevindt en loopt tot of start van een gemeenschappelijk punt in voor- of achterhaven. Binnen deze deeltrajecten werden parameters berekend die een kwalitatieve vergelijking tussen de alternatieven onderling toelaten. Deze parameters hebben betrekking op de uitvoeringstijd, gemiddelde vaarsnelheid, het gebruik van sleepboten en boegschroef en de afstanden tot harde constructies langsheen het afgelegde traject.

De verkeersafwikkeling van schepen in de haven werd niet in detail bestudeerd. Er werden echter wel enkele gekoppelde simulaties uitgevoerd waarbij ontmoetingen tussen twee schepen op verschillende locaties onderzocht werden.

Voor zowel de beoordeling van de loodsen, de berekende parameters als de ontmoetingen, werd een kwalitatieve beoordeling opgesteld op basis van cijfers.

Voor elke parameter werd een genormeerde rangorde tussen de alternatieven opgesteld (zie Tabel 20). Het best scorend alternatief krijgt de waarde 1 toegekend. De score van de andere alternatieven voor de beschouwde parameter werden berekend door hun berekende waarde te delen door de waarde van het best scorend alternatief. Op die manier bekomt men per parameter telkens een waarde die groter dan of gelijk is aan 1. Deze vergelijking laat toe om een rangorde op te stellen en na te gaan of de verschillen tussen de alternatieven onderling significant zijn.
Hoe beter een alternatief nautisch scoort, hoe kleiner onder andere de risico's op incidenten zijn en hoe vlotter of sneller het schip van en naar z'n bestemming kan varen.

5.2 Conclusie

Tabel 20 bundelt de (genormeerde) rangordes die opgesteld werden in hoofdstuk 4 bij de voorstelling van de resultaten. De som van deze genormeerde rangordes resulteert in een globaal cijfer. Hoe kleiner de totale rangorde (SOM in Tabel 20) hoe beter het alternatief nautisch scoort ${ }^{3}$.

Tabel 22 - Rangorde samengevat

	§4.1		§4.2						
			Uitvoeringstijd		Impuls				\sum_{i}^{0}
					Sleepboot achter	Sleepboot voor	Boegschroef		
Visart	1.55	1.67	1.69	1.28	1.89	2.54	2.35	2.81	15.8
VisartOost	1.45	1.53	1.65	1.26	1.61	2.86	2.27	2.98	15.6
Carcockesite	1.35	1.53	1.63	1.27	1.63	2.72	2.30	2.27	14.7
VandammeOost	1.10	1.07	1.06	1.01	1.00	1.52	1.00	1.00	8.80
VandammeWest	1.00	1.00	1.00	1.00	1.00	1.00	1.25	1.53	8.80
Verbindingsdok	1.25	1.27	1.27	1.33	1.38	2.17	2.02	2.06	12.7

Men kan concluderen dat de alternatieven met een sluis parallel aan de P. Vandammesluis (VandammeOost en VandammeWest) nautisch het best en gelijkwaardig scoren. De westelijke alternatieven, nl. Visart, VisartOost en Carcockesite scoren nautisch het minst goed. Het alternatief Verbindingsdok is nautisch gezien net iets beter dan deze drie westelijke varianten. Ongeveer dezelfde rangorde werd opgesteld voor het uitvoeren van ontmoetingen in de verschillende alternatieven. Het uitvoeren van ontmoetingen binnen de westelijke alternatieven is veel moeilijker dan bij de oostelijke alternatieven. Daartegenover staat dat bij de uitvoering van een nieuwe zeesluis in de westelijke helft van de haven (Visart, VisartOost of Carcockesite) de verkeersstroom opgesplitst kan worden wat dan weer positief kan zijn voor de verkeersafwikkeling via twee sluizen die geografisch niet vlak naast elkaar liggen.

In alle alternatieven is het mogelijk om bij ZW5 van de voorhaven tot de achterhaven te varen en omgekeerd mits voldoende beschikbare sleepboothulp. De hierboven opgestelde rangorde geeft voor de zes alternatieven weer welke de grootste nautische voorkeur geniet. Indien later een minder goed nautisch scorend alternatief uitgevoerd wordt, dan zal dit meer risico's met zich meebrengen. Met andere woorden, hoe moeilijker toegankelijk het alternatief, hoe:

- groter de kans op een botsing met de oevers;
- groter de kans op een aanvaring tussen schepen onderling;

[^2]- groter de inzet van machine, roer, boegschroef;
- groter de in te zette sleepboothulp;
- sneller een operationele limiet bereikt wordt. De kans bestaat dat bij extremere weercondities dan deze getest bij de simulaties (ZW5) de toegankelijkheid van en naar de achterhaven niet altijd verzekerd kan worden. Het is dus mogelijk dat de maximale windsterkte bij een moeilijker nautisch scorend alternatief sneller bereikt wordt dan bij een nautisch beter scorend alternatief. De 'downtime' bij de moeilijkere nautisch toegankelijke alternatieven zal groter zijn dan de downtime bij de beter scorende varianten. Operationele limieten werden niet bepaald dus hierover kan geen uitspraak gedaan worden.
Ten slotte wordt vermeld dat alle alternatieven verder geoptimaliseerd kunnen worden zodanig dat de toegang van en naar de sluizen veiliger en vlotter kan verlopen. Het bestuderen van optimalisaties moet onderwerp vormen van verder (simulatie)studiewerk.

Bijlage 1: Simulatieoverzicht

Tabel 23 - Simulaties (gesorteerd per alternatief) met vermelding simulatietijd, beoordeling moeilijkheid / concentratie en reserve

Nr	Bestandsnaam	Wind	Voorhaven / Achterhaven	Alternatief	$\begin{array}{\|l\|} \hline \text { In / } \\ \text { Uit } \end{array}$	$\begin{array}{\|c} \hline \mathrm{Tijd} \\ {[\mathrm{~min}]} \end{array}$	Moeilijkheid / Concentratie	Reserve
3	SIM225_Visart_001	ZW5	VH	Visart	In	26	3	3
8	SIM225_Visart_002	ZW5	VH	Visart	Uit	17	3	3
13	SIM225_Visart_003	ZW5	VH	Visart	In	22	4	3
21	SIM225_Visart_004	ZW5	VH	Visart	Uit	19	4	3
24	SIM225_Visart_005	ZW5	AH	Visart	In	20	4	3
28	SIM225_Visart_006	ZW5	AH	Visart	Uit	27	4	3
43	SIM225_Visart_007	ZW5	AH	Visart	In	20	4	3
50	SIM225_Visart_008	ZW5	AH	Visart	Uit	20	5	4
9	SIM225_VisartOost_001	ZW5	VH	VisartOost	In	24	3	2
19	SIM225_VisartOost_002	ZW5	VH	VisartOost	In	23	4	3
25	SIM225_VisartOost_003	ZW5	AH	VisartOost	Uit	21	3	3
45	SIM225_VisartOost_004	ZW5	AH	VisartOost	Uit	24	4	3
4	SIM225_Carcockesite_001	ZW5	VH	Carcockesite	In	37	3	3
10	SIM225_Carcockesite_002	ZW5	VH	Carcockesite	Uit	29	3	2
14	SIM225_Carcockesite_003	ZW5	VH	Carcockesite	Uit	30	4	3
20	SIM225_Carcockesite_004	ZW5	VH	Carcockesite	In	26	4	3
26	SIM225_Carcockesite_005	ZW5	AH	Carcockesite	Uit	10	3	2
29	SIM225_Carcockesite_006	ZW5	AH	Carcockesite	In	9	3	3
47	SIM225_Carcockesite_007	ZW5	AH	Carcockesite	In	10	3	3
51	SIM225_Carcockesite_008	ZW5	AH	Carcockesite	Uit	16	4	4
1	SIM225_VandammeOost_001	ZW3	VH	VandammeOost	In	21	2	2
5	SIM225_VandammeOost_002	ZW6	VH	VandammeOost	Uit	2	4	5
11	SIM225_VandammeOost_003	ZW5	VH	VandammeOost	Uit	11	3	2
12	SIM225_VandammeOost_004	ZW3	VH	VandammeOost	In	15	3	1
15	SIM225_VandammeOost_005	ZW5	VH	VandammeOost	Uit	12	2	2
22	SIM225_VandammeOost_006	ZW3	AH	VandammeOost	Uit	12	2	2
27	SIM225_VandammeOost_007	ZW5	AH	VandammeOost	In	11	3	2
41	SIM225_VandammeOost_008	ZW3	AH	VandammeOost	Uit	18	2	2
46	SIM225_VandammeOost_009	ZW5	AH	VandammeOost	In	12	3	2
49	SIM225_VandammeOost_010	ZW5	AH	VandammeOost	Uit	15	3	2
2	SIM225_VandammeWest_001	ZW5	VH	VandammeWest	In	18	3	2
18	SIM225_VandammeWest_002	ZW5	VH	VandammeWest	In	16	2	2
30	SIM225_VandammeWest_003	ZW5	AH	VandammeWest	Uit	16	2	1
32	SIM225_VandammeWest_004	ZW5	AH	VandammeWest	In	10	2	2
42	SIM225_VandammeWest_005	ZW5	AH	VandammeWest	Uit	11	3	2
48	SIM225_VandammeWest_006	ZW5	AH	VandammeWest	In	11	3	2
6	SIM225_Verbindingsdok_001	ZW5	VH	Verbindingsdok	In	29	3	2
7	SIM225_Verbindingsdok_002	ZW6	VH	Verbindingsdok	Uit	6	4	5

Nr	Bestandsnaam	Wind	Voorhaven / Achterhaven	Alternatief	In / Uit	Tijd [min]	Moeilijkheid / Concentratie	Reserve
16	SIM225_Verbindingsdok_003	ZW5	VH	Verbindingsdok	In	27	3	2
17	SIM225_Verbindingsdok_004	ZW5	VH	Verbindingsdok	Uit	22	3	2
23	SIM225_Verbindingsdok_005	ZW5	AH	Verbindingsdok	Uit	12	4	3
31	SIM225_Verbindingsdok_006	ZW5	AH	Verbindingsdok	In	5	3	3
44	SIM225_Verbindingsdok_007	ZW5	AH	Verbindingsdok	Uit	8	3	2
52	SIM225_Verbindingsdok_008	ZW5	AH	Verbindingsdok	In	5	3	3
37	SIM225_Visart_gek_001	ZW5	VH	Visart	In	24		
37	SIM360_Visart_gek_001	ZW5	VH	Visart	Uit	16		
36	SIM225_VisartOost_gek_001	ZW3	AH	VisartOost	In	23		
36	SIM360_VisartOost_gek_001	ZW3	AH	VisartOost	Uit	20		
38	SIM225_VandammeOost_gek_001	ZW5	AH	VandammeOost	In	12		
38	SIM360_VandammeOost_gek_001	ZW5	AH	VandammeOost	Uit	23		
40	SIM225_VandammeWest_gek_002	ZW5	VH	VandammeWest	In	19		
40	SIM360_VandammeWest_gek_002	ZW5	VH	VandammeWest	Uit	9		
35	SIM225_Verbindingsdok_gek_002	ZW4	VH	Verbindingsdok	In	23		
39	SIM225_Verbindingsdok_gek_003	ZW5	VH	Verbindingsdok	In	24	4	2
35	SIM360_Verbindingsdok_gek_002	ZW4	VH	Verbindingsdok	Uit	18		
39	SIM360_Verbindingsdok_gek_003	ZW5	VH	Verbindingsdok	Uit	24	4	2

Bijlage 2: Commentaar bij simulaties

Tabel 24 - Commentaar bij de simulatie

Nr	Commentaar
1	De eerste simulatie bij ZW3 uitgevoerd. Voorzichtig starten, nl met startsnelheid van $3 \mathrm{~m} / \mathrm{s}$, om te kijken hoe het schip afremt. Na de simulatie blijkt dat starten met $4.5 \mathrm{~m} / \mathrm{s}$ ok is.
2	Voorste sleepboot tot half. Achteraan gevraagd om naar 3 knoop te brengen, later naar 2 knoop. Dit werd gerealiseerd door bijna vol te staan. Boegschroef enkel op het einde gebruikt, bijna alles met voorste sleepboot. In de sluis boegschroef. Veel reserve want boegschroef niet veel gebruikt, enkel op het einde in de sluis.
3	Te dicht bij afgemeerd schip maar op deze manier is het mogelijk om het manoeuvre uit te voeren in een vloeiende beweging. Je wilt liefst zo vroeg mogelijk aligneren om te zien of de beschikbare sleepboothulp en boegschroef het schip kunnen ophouden tegen de wind. In de sluis met boegschroef vol naar SB en sleepboot een kwart is dit mogelijk bij ZW5.
4	lets andere strategie dan bij aanloop naar de Visart. Parallel varen langs het afgemeerd schip op ongeveer een scheepsbreedte, voorbij het afgemeerd schip draaien richting 171.5°. Passeren langs containerschip was beter. Snelheid in de doorsteek van 3 à 4 knoop. Een hogere snelheid is niet mogelijk. Tussen 3 à 3.5 knoop waarschijnlijk. Doorsteek op zich maakt het niet moeilijker t.o.v. Visart want je hoeft niet onmiddellijk op te lijnen voor de sluis.
5	Simulatie vroegtijdig afgebroken. Uit de sluis varen met ZW6 was zeer moeilijk. In werkelijkheid is er ook afscherming in de kolk dus bij ZW6 zal het mogelijks iets gemakkelijker gaan in werkelijkheid.
6	Doorsteek is geen probleem, veel comfortabelere dan doorsteek van 85 m . Snelheid 3 à 4 knoop. Het was mogelijk om onder 3° te varen, dit is in Visart doorsteek niet mogelijk. Sleepboot kan ergens aan de oude kop vastmaken. Invaren van de sluis was iets te traag, 2 knoop. Binnenvaren aan 3 knoop zou waarschijnlijk beter zijn. Oriëntatie is zeker gunstig met deze wind. Sleepboot vooraan werd niet gebruikt! Voldoende ruimte. Reserve: sleepboot vooraan niet gebruikt, sleepboot achteraan zoals andere simulaties om af te stoppen. Boegschroef enkel voor manoeuvre naar de sluis.
7	Nagaan of ZW6 met verbindingsdok eenvoudiger gaat dan de scenario's met oriëntatie PVD sluis. Moeilijk om evenwicht te vinden tussen schip, sleepboten en wind. Simulatie vroegtijdig afgebroken.
8	Sluis buitenvaren zonder sleepboten bij ZW5 kan. De ruimte bij CHZ is krap, net doenbaar maar er wordt best wel wat verruimd. De voorste sleepboot werd snel losgemaakt maar dit zou de loods in werkelijkheid waarschijnlijk niet doen. Reserve: weinig ruimte bij het passeren van het afgemeerd schip. Boegschroef wordt als vrij krachtig beschouwd. Sleepboten werden weinig tot niet ingezet.
9	Manoeuvre zeer rustig uitgevoerd. Benedenwinds richting de sluis en vervolgens een beetje opgewerkt. Manoeuvre zelfde boordeling als VandammeWest in ZW5 maar het duurt iets langer. Reserves: 2 en geen 3.3 Was bij Visart het geval maar nu is het oplijnen iets gemakkelijker. Ruimte tot afgemeerd schip was ook beter.
10	Snelheid in de doorsteek constant houden met sleepboot, rond 4 kts. In doorsteek geen BS meer gebruikt, enkel sleepboten. Vlot manoeuvre. Reserve 2: BS niet gebruikt in doorsteek, enkel sleepboot vooraan even minimum. Achterste sleepboot hield snelheid tussen 3 en 4 knoop.
11	Enkel BS gebruikt bij het buitenvaren.
12	De sleper achteraan bracht het schip naar 2.5 knoop en vervolgens naar 2 knoop in de sluis.
13	Reserve bepaald door afstand tot afgemeerd schip. Oplijnen pas op het einde, nog 7° op het einde. Achtersleepboot niet gebruikt om te manoeuvreren, enkel om snelheid te controleren. Moeilijkheid:

Nr	Commentaar
	moeilijk alles in acht genomen. Je kunt het schip niet even in de wind leggen, er is geen ruimte.
14	Schip lijkt moeilijk te sturen bij DeadSlow. Sluis uit bij 2 knoop. Doorsteek max 4 knoop. Bedoeling was om doorsteek te nemen onder een hoekje maar dit werd niet helemaal uitgevoerd zoals gehoopt. Moeilijkheid: concentratie dient lange tijd gewaarborgd te blijven, voor iedereen (loods, wielman, sleepbootkapitein). Sleepboten vast houden tot voorbij CHZ.
15	Gemakkelijke simulatie. Roer veel hard stuurboord omdat schip in de wind draait. Dit is mogelijks een model-issue.
16	Begin doorsteek ongeveer 4.5 knoop, afgebouwd naar 4 knoop door sleepboot. Er werd vervolgens gevraagd om naar 2.5 knoop te gaan en dan naar 2 knoop. Achteruit geslagen rond 23 ', snelheid tot 1.6 knoop gebracht. Achteruitslaan is ok, schroefeffect was gunstig. Reserve op dat moment aanwezig, sleepboten over. Reserve: voldoende.
17	Voorbij de sluis draaide het schip iets te ver door, maar dit vormde geen probleem. Als het sluizencomplex iets meer naar het westen zou liggen dan heb je nog meer ruimte. Zelfs met NO-wind is er geen probleem. Reserve op voorste sleepboot. Machine op slow om beter te sturen.
18	Gemakkelijke
19	Moeilijkheid, concentratie: paar bochten na elkaar. Reserve: voorste boot heeft wel wat moeten werken.
20	Snelheid in doorsteek vermoedelijk iets te hoog, dit was 4 à 4.7 knoop. Er door varen zonder hulp, enkel onder een drifthoek is niet evident bij deze snelheid. Veiliger is om sleepboot vooraan te gebruiken. Afstand tot afgemeerd schip is ok. Reserve op slepers. Reserves naar de sluis voldoende, elders iets minder. Die doorsteek zorgt voor extra moeilijkheid. Afstanden in het kanaal zijn klein.
21	Reserve: op sleepboten voldoende, afstanden klein.
22	Sleepboot achter enkel gebruikt om af te remmen. De loods gaf aan dat volgens hem wat meer ruimte wenselijk is voor de sluis aan 'rechteroever', rekening houdend met NO-wind waarbij het schip volgens hem beter eerst iets hoger zit en vervolgens met de wind mee de sluis invaart. Concentratie: bij ZW3 is dit een eenvoudige simulatie. Reserve: voldoende reserve.
23	Startpositie NID (Noordelijk InsteekDok). In begin zeer veel sleepboothulp gebruikt. Approach van de sluis: zwaaien naar bakboord, dan alles af (sleepboten, machine, en wachten) en driften richting de sluis. Reserve: veel machine gebruik (stoppen, achteruit) en veel gebruik van sleepboten. Tweede sluis is volledig geblokkeerd.
24	Concentratie: zeer lang geconcentreerd bezig blijven. Reserve: ... Inschatting van kanaal was wat fout door miscommunicatie.
25	Concentratie: moeilijk, er is wel wat ruimte maar concentratie is doenbaar. Je hebt niet heel de tijd het gevoel dat je in de problemen zit. Eenvoudiger dan simulatie 24 (Visart)
26	Snelheid in de sluis iets te hoog. Het is niet helemaal realistisch uitgevoerd, té snel. Reserves zijn er nog wel. Sleepboten redelijk veel gebruikt. Beter zou zijn om de snelheid te minderen en dan lukt het zeker goed volgens de loods.
27	Snelheid bij het buitenvaren van de sluis is te hoog. Rechteroever is niet ok, te krap volgens de loods. PVDWest is vermoedelijk gemakkelijker. Sleepboot diende wel wat te helpen naar stuurboord.
28	Breedte eerste kanaal 90 m in de simulatieomgeving. Vanaf de bocht heeft de loods het gevoel dat hij een sluis invaart van 1000 m . Concentratie: manoeuvreren tot aan de sluis. Reserve: afstanden tot oevers zijn klein. Sleepboten ook veel gebruikt. Kans op schade is zeer groot.
29	lets te vroeg beginnen draaien, al in de sluis. Concentratie: maar weinig reserve. Bocht maken naar bakboord vergt meer van sleepboten, machine en roer dan bocht naar stuurboord. (rechtsdraaiende schroef)
30	Reserves: zeer weinig sleepboten gebruikt. Concentratie: ok.

Nr	Commentaar
31	Ok, even achteruit geslagen. Reserve: BS veel gebruikt, sleepboot vooraan sterk gebruikt. Afstanden tot harde constructies steeds voldoende.
32	Concentratie: ok gemakkelijk, Reserves: met minder sleepboothulp en trager varen zou dit ook zeker uitvoerbaar zijn. Door de gemaakte keuze (rond 4 knoop varen), en het zicht op de simulator, werden sleepboten even op 75% gebruikt. Voldoende reserve: er is nog over... het machine. SIM225 zonder roer uitgevoerd
35	Voor het uitgaande schip viel dit zeer goed mee. Ook voor het inkomende schip was dit uitvoerbaar. Voor beide schepen is er nog reserve.
36	Nagaan of kruisen mogelijk is tussen VisartOost en Verbindingsdok tussen een grote 265×40 en 162.2×25.2. Zeer hoge concentratie van het begin tot het eind.
37	Ingaand schip, naar de sluis, oplijnen naar de sluis was zelfs nog ok maar toch wel de limiet. Kruisen best niet tussen Z 10 en de sluis. Als er geen schip afgemeerd licht zou passeren dichter kunnen waarschijnlijk.
38	Goed doenbaar, weinig verschil met huidige toestand.
39	Doorsteek met groot (265) en klein (162) schip getest. Doenbaar met twee sleepboten voor en achter. Klein schip met één sleepboot.
40	Uitvarende sleepboot gooide snel de sleepboten los, vermoedelijk een beetje uit gewoonte. Het schip dat naar binnen voer moest op het afgemeerd cruiseschip sturen en dit is een vreemd / onaardig gevoel. Het cruiseschip zal het niet fijn vinden want het inkomende schip vaart er recht op af! Afgemeerd schip niet dichter bij de sluis afmeren.
41	Snelheid liep bij de start op tot ongeveer 6 knoop, nadien gevraagd voor half om af te remmen. Sleepboot vooraan even gebruikt.
42	Alternatief is ok, loods had een beetje moeite met het zicht en botste daardoor op de sluis. Vlak voor de sluis vroeg de loods nog naar stuurboord te trekken vooraan en later bakboord achteraan waardoor het voorschip naar stuurboord kwam.
43	Zeer lang geconcentreerd blijven is noodzakelijk. Bocht nemen is doenbaa
44	Alternatief is goed uitvoerbaar. Zicht op simulator was voor loods niet evident.
45	Sleepboten hebben stevig moeten werken. Afstanden tot kaai zijn klein. Keuze om stuurboord zicht te gebruiken. Bocht naar Visart van 90° is lastig maar doenbaar.
46	Volgens de loods was er voldoende ruimte aan rechteroever voor de sluis (bij 5 Bft). Sleepboten even intensief gebruikt tot $3 / 4$, dit is geen probleem.
47	Reserve: weinig omdat sleepboten het schip rond eerste bocht moeten helpen draaien. Schip moet eerst volledig uit de sluis alvorens het kan beginnen bochten.
48	Goed doenbaar. Sleepboothulp niet overdreven gebruikt.
49	Goed doenbaar met ZW5 maar volgens de loods lastiger met NO wind.
50	Lastig manoeuvre, voor loods niet doenbaar in werkelijkheid.
51	De loods vond dit een zeer moeilijke bocht.
52	Redelijk korte afstand voorbij de sluis. In de sluis machine vooruit gegeven zodat er nadien, net voorbij de sluis, de machine op achteruit gebruikt wordt. Reserve: BS veel gebruikt, sleepboten niet zo veel. Machine sterk achteruit gebruikt.

Bijlage 3: Grafieken

_- Stuwkracht [ton]
Troskracht [ton]
———ijn hoek [${ }^{\circ}$]
Kluis

Bijlage 4: Vaarbaanplots - statisch

Bijlage 5: Vaarbaanplots - animatie (KMZ-bestanden)

SIM225_Visart_001.kmz
SIM225_Visart_002.kmz
SIM225_Visart_003.kmz
SIM225_Visart_004.kmz
SIM225_Visart_005.kmz
SIM225_Visart_006.kmz
SIM225_Visart_007.kmz
SIM225_Visart_008.kmz
SIM225_VisartOost_001.kmz
SIM225_VisartOost_002.kmz
SIM225_VisartOost_003.kmz
SIM225_VisartOost_004.kmz
SIM225_Carcockesite_001.kmz
SIM225_Carcockesite_002.kmz
SIM225_Carcockesite_003.kmz
SIM225_Carcockesite_004.kmz
SIM225_Carcockesite_005.kmz
SIM225_Carcockesite_006.kmz
SIM225_Carcockesite_007.kmz
SIM225_Carcockesite_008.kmz
SIM225_VandammeOost_001.kmz
SIM225_VandammeOost_002.kmz
SIM225_VandammeOost_003.kmz
SIM225_VandammeOost_004.kmz
SIM225_VandammeOost_005.kmz
SIM225_VandammeOost_006.kmz
SIM225_VandammeOost_007.kmz
SIM225_VandammeOost_008.kmz
SIM225_VandammeOost_009.kmz
SIM225_VandammeOost_010.kmz
SIM225_VandammeWest_001.kmz

SIM225_VandammeWest_002.kmz
SIM225_VandammeWest_003.kmz
SIM225_VandammeWest_004.kmz
SIM225_VandammeWest_005.kmz
SIM225_VandammeWest_006.kmz
SIM225_Verbindingsdok_001.kmz
SIM225_Verbindingsdok_002.kmz
SIM225_Verbindingsdok_003.kmz
SIM225_Verbindingsdok_004.kmz
SIM225_Verbindingsdok_005.kmz
SIM225_Verbindingsdok_006.kmz
SIM225_Verbindingsdok_007.kmz
SIM225_Verbindingsdok_008.kmz
SIM225_Visart_gek_001.kmz
SIM360_Visart_gek_001.kmz
SIM225_VisartOost_gek_001.kmz
SIM360_VisartOost_gek_001.kmz
SIM225_VandammeOost_gek_001.kmz
SIM360_VandammeOost_gek_001.kmz
SIM225_VandammeWest_gek_002.kmz
SIM360_VandammeWest_gek_002.kmz
SIM225_Verbindingsdok_gek_002.kmz
SIM360_Verbindingsdok_gek_002.kmz
SIM225_Verbindingsdok_gek_003.kmz
SIM360_Verbindingsdok_gek_003.kmz
SIM

Bijlage 6: Coördinaten snijlijnen

Tabel 25 - Coördinaten snijijijnen (Lambert 72)

	X1	Y1	X2	Y2
VHo1	68604	227228	69288	227391
VHo2	68189	225376	68476	225417
VHo3	68402	224059	68710	224105
VHo4	69555	225824	69799	225956
VHo5	69933	224391	70379	224345
VHa1	68522	227488	69187	227641
VHa2	68188	225644	68398	225674
VHa3	68357	224325	68633	224359
VHa4	69171	225930	69826	226269
VHa5	69971	224655	70380	224616
AHo1	68382	224694	68523	224714
AHo2	68526	223437	68714	223464
AHo3	69761	225145	70247	225403
AHo4	69906	223820	70321	223776
AHo5	69427	223541	69987	223235
AHo6	69537	223093	69658	223709
AHa1	68383	224426	68546	224450
AHa2	68581	223177	68836	223216
AHa3	69778	224860	70296	225127
AHa4	69712	223578	70325	223504
AHa5	69454	223375	69537	223067
AHa6	69815	223717	70025	223196
VH				

DEPARTEMENT MOBILITEIT \& OPENBARE WERKEN
Waterbouwkundig Laboratorium
Berchemlei 115, 2140 Antwerpen
T +32 (0)3 2246035
F +32 (0)3 2246036
waterbouwkundiglabo@vlaanderen.be
www.waterbouwkundiglaboratorium.be

[^0]: Scheepsbeweging \rightarrow ontwerp vaarweg en haven \rightarrow simulaties

[^1]: ${ }^{1}$ Op 21/3 werden SIM360 en SIM225 ingezet voor de ontmoetingen
 ${ }^{2}$ Simulatie 33 en 34

[^2]: ${ }^{3}$ Merk op dat VandammeOost en VandammeWest niet ongeveer "dubbel zo goed scoren" als de anderen. Het is immers een set van parameters die leidt tot een globale score die toelaat de alternatieven onderling kwalitatief te vergelijken.

