

13_159_8 WL rapporten

Ontwikkeling LATIS 4

Deelrapport 3c Opmaak Baselayerpackage voor LATIS 4.0

waterbouwkundiglaboratorium.be

DEPARTEMENT MOBILITEIT & OPENBARE WERKEN

Ontwikkeling LATIS 4

Deelrapport 3c: Opmaak Baselayerpackage voor LATIS 4.0

Beullens, J.; Broidioi, S.; De Sutter, R.; De Maeyer, P.; Pereira, F.; Mostaert, F.

Cover figuur © Vlaamse overheid, Departement Mobiliteit en Openbare Werken, Waterbouwkundig Laboratorium

Juridische kennisgeving

Het Waterbouwkundig Laboratorium is van mening dat de informatie en standpunten in dit rapport onderbouwd worden door de op het moment van schrijven beschikbare gegevens en kennis.

De standpunten in deze publicatie zijn deze van het Waterbouwkundig Laboratorium en geven niet noodzakelijk de mening weer van de Vlaamse overheid of één van haar instellingen.

Het Waterbouwkundig Laboratorium noch iedere persoon of bedrijf optredend namens het Waterbouwkundig Laboratorium is aansprakelijk voor het gebruik dat gemaakt wordt van de informatie uit dit rapport of voor verlies of schade die eruit voortvloeit.

Copyright en wijze van citeren

© Vlaamse overheid, Departement Mobiliteit en Openbare Werken, Waterbouwkundig Laboratorium 2021 D/2021/3241/217

Deze publicatie dient als volgt geciteerd te worden:

Beullens, J.; Broidioi, S.; De Sutter, R.; De Maeyer, P.; Pereira, F.; Mostaert, F. (2021). Ontwikkeling LATIS 4: Deelrapport 3c: Opmaak Baselayerpackage voor LATIS 4.0. Versie 1.0. WL Rapporten, 13_159_8. Waterbouwkundig Laboratorium: Antwerpen

Overname uit en verwijzingen naar deze publicatie worden aangemoedigd, mits correcte bronvermelding.

Documentidentificatie

Opdrachtgever:	Waterbouwkundig Laboratorium		Ref.:	WL2021R13_159_8	
Trefwoorden (3-5):	Schade, risico, overstromingen, LATIS				
Kennisdomeinen:	Waterbeheer > Risico>Overstromingen > Numerieke modelleringen				n
Tekst (p.):	39		Bijlagen	(p.):	13
Vertrouwelijk:	🖾 Nee	🛛 Online be			

Auteur(s): Beullens, J.; Broidioi, S.; De Sutter, R.; De Maeyer, P.

Controle

	Naam	Handtekening
Revisor(en):	Pereira Fernando	Getekend door:Fernando Pereira (Signat Getekend op:2021-09:27 09:22:23 + 02:0 Reden:1k keur dit document goed Fernanco Pereira
Projectleider:	Pereira Fernando	Getekend door:Fernando Pereira (Signat Getekend 0:2021-027 09:23 12 + 10:0 Reden:Ik keur dit document goed Fernavio Pereira

Goedkeuring

Afdelingshoofd:	Mostaert, F. Voor het afdelingshoofd, afwezig Patrik Peeters, Ingenieur, belast met de leiding van de afdeling Waterbouwkundig Laboratorium	Patrik Peeters (Signature)	Digitaal ondertekend door Patrik Peeters (Signature) Datum: 2021.09.26 09:53:30 +02'00'
-----------------	---	----------------------------------	---

Abstract

LATIS is een gespecialiseerde software die ontwikkeld werd voor het berekenen van schade en risico bij overstromingen. Hiervan zijn reeds verschillende versies ontwikkeld die gebruik maken van een verscheidenheid aan geografische data. In deze technische nota wordt een overzicht gegeven van de basisdata die gebruikt wordt in LATIS 4.0 en wordt opgesomd welke bewerkingen deze data moeten ondergaan om gebruikt te kunnen worden.

Inhoudstafel

Ab	stract		111
Inh	oudstafel	l	V
Lijs	t van de t	abellen	. VII
Lijs	t van de f	iguren	VIII
1	Inleidin	g	1
2	Overzic	ht van de data gebruikt in LATIS	2
	2.1 Mo	dule 1: Bodemgebruik polygonen	2
	2.1.1	Input: Biologische waarderingskaart	2
	2.1.2	Input: LocWon	3
	2.1.3	Input: IndType	3
	2.1.4	Output: Bodem_Poly	5
2	2.2 Mo	dule 2: Bodemgebruik lijnen	5
	2.2.1	Input: Wegen	5
	2.2.2	Input: Spoorwegen	6
	2.2.3	Output: Bodem_wegen en Bodem_spoorwegen	6
	2.2.4	Output: Wegen en Spoorwegen	7
2	2.3 Mo	dule 3: Bodemgebruik punten	7
	2.3.1	Puntelementen voorgesteld als punt	8
	2.3.2	Puntelementen voorgesteld als polygoon	. 10
	2.3.3	Input: Puntelementen punten (pnt_pnt)	. 18
	2.3.4	Input: Puntelementen polygonen (pnt_pol)	. 18
	2.3.5	Input: Waterwinning	. 18
	2.3.6	Output: Bodem_punten	. 19
	2.3.7	Output: Geen_punten	. 19
2	2.4 Mo	dule 4: Bodemgebruik combinatie	. 19
	2.4.1	Input: Bodem_poly, Bodem_wegen, Bodem_spoorwegen en Bodem_punten	. 20
	2.4.2	Output: Bodemgebruik	. 20
	2.4.3	Output: Akkerbouw, Bebouwing I, Bebouwing II, Industrie I, Weiland,	. 20
4	2.5 Mo	dule 5: Schade puntelementen	. 21
	2.5.1	Input: Puntelementen polygonen en Puntelementen punten	. 22
	2.5.2	Input: Punten_bedrijven, Punten_woningen, Punten_elek_comm en Punten_metro_park	. 22
	2.5.3	Output: Max_s_bedrijf, Max_s_woning, Max_s_elek_comm, Max_s_metr_park	. 22

2.	6 Mo	dule 6: OOA Woningen	. 23
	2.6.1	Input: Ssnr	. 23
	2.6.2	Input: Woning_aant	. 23
	2.6.3	Input: Woning_prijs	. 25
	2.6.4	Input: Bebouwing I	. 26
	2.6.5	Output: Max_woningen en Max_inboedel	. 26
2.	7 Mo	dule 7: OOA Voertuigen	. 27
	2.7.1	Input: Gemeentenummer	. 27
	2.7.2	Input: Voertuigen_aantal	. 28
	2.7.3	Input: Bebouwing I en II, Industrie I en II en Infrastructuur	. 28
	2.7.4	Output: Maxvoertuigen	. 28
2.	8 Extr	a basisrasters	. 29
	2.8.1	Landbouwstreek	. 29
	2.8.2	Max_schade_industrie	. 29
	2.8.3	Drempel_metro_parkeergarage	. 30
	2.8.4	Waterwinning_dem	. 30
	2.8.5	Popdens	. 31
	2.8.6	Evacuatie wegen	. 32
	2.8.7	Maximale schadekaart	. 33
	2.8.8	Culturele kwetsbaarheid	. 33
	2.8.9	Maximale culturele schadekaart	. 34
	2.8.10	Sociale kwetsbaarheid	. 35
	2.8.11	Maximale sociale schadekaart	. 35
	2.8.12	Vegetatietype	. 36
	2.8.13	Ecologische Waarde	. 36
	2.8.14	Maximale ecologische schadekaart	. 37
3	Besluit.		. 38
4	Referen	itielijst	. 39
Bijla	ge 1 : '	Vertaling BWK naar LATIS-klassen	. B1
Bijla	ge 2 :	Omzetten van een shapefile naar een westelijk en een oostelijk raster	B13

Lijst van de tabellen

Tabel 1 - Wegkla	asse en biihorende be	angriikheidsscore er	n evacuatiefactor	
TUDCI I WCBRIC	abbe en bijnorende be		revacuationactor	

Lijst van de figuren

Figuur 1 - Module 1: Bodemgebruik polygonen	2
Figuur 2 - Module 2: Bodemgebruik Lijnen	5
Figuur 3 - Module 3: Bodemgebruik Punten	7
Figuur 4 - Module 4: Bodemgebruik Combinatie	20
Figuur 5 - Module 5: Schade puntelementen	21
Figuur 6 - Module 6: OOA Woningen	23
Figuur 7 - Van oostelijk raster naar "midoostelijk" raster met functie WINDOW in Idrisi	24
Figuur 8 - Aanmaak midden raster Idrisi met de functie CONCAT	25
Figuur 9 - Module 7: OOA Voertuigen	27

1 Inleiding

In het kader van de Europese Overstromingsrichtlijn (2007/60/EG) wordt LATIS 4.0 ontwikkeld. Deze nieuwe versie van de risico-software zal in vergelijking met de vorige versie drie nieuwe modules bevatten: een module voor het berekenen van de sociale impact, een module voor het berekenen van de culturele impact en een module voor het berekenen van de ecologische impact van overstromingen. Verder werden er ook enkele methodologische verbeteringen uitgevoerd. Zo werd er een nieuwe methodologie opgesteld voor het berekenen van de schade aan wegen en spoorwegen. Een van de belangrijkste inputbestanden voor het berekenen van schade en risico's met behulp van LATIS, is de Base Layer Package (BLP). Deze is de verzameling van inputbestanden die nodig zijn om de schade-, slachtoffer- en additionele modules uit te voeren. Een BLP wordt samengesteld door de output van de 7 voorbereidende modules en enkele aanvullende bestanden. Voor heel wat van de bronbestanden die voor deze Base Layer Package gebruikt worden, zijn reeds meer actuele versies beschikbaar (Beullens *et al.*, 2016) en deze zullen dan ook gebruikt worden voor de aanmaak van een nieuw BLP dat gebruik zal worden in LATIS 4.0.

In dit rapport zullen alle modules afzonderlijk besproken worden. Per module wordt beschreven welke basisdata gebruikt wordt en welke stappen (hoofdzakelijk bewerkingen in ArcGIS) ondernomen worden om tot de inputbestanden van elke module te komen. Na het berekenen van elke module en enkele extra basisbestanden is het mogelijk om in LATIS een nieuw BLP aan te maken. Alle bestanden die behoren tot het BLP zullen met een blauwe kleur weergegeven worden.

2 Overzicht van de data gebruikt in LATIS

2.1 Module 1: Bodemgebruik polygonen

In deze module wordt een landgebruikskaart (vertaling van de Biologische Waarderingskaart) gecombineerd met data afkomstig uit het GRB (Grootschalig Referentie Bestand) tot een nieuwe bodemgebruikskaart. Deze bodemgebruikskaart wordt vervolgens als input gebruikt in module 4 (Bodemgebruik Combinatie).

Module 1: Land Use Polygons	Input Files	Output Files	
Module 2: Land Use Lines	Land Use	Land Use (Polygons)	
Madda 2 Jacob	GRB		
Use Points	Industry Type		
Module 4: Land Jse Combination	Calculate Module		
lodule 5: Damage Points			
Module 6: OOA			
Module /: UOA Vehicles			
<u> </u>			Open Sa

Figuur 1 - Module 1: Bodemgebruik polygonen

2.1.1 Input: Biologische waarderingskaart

Beschrijving:

De Biologische Waarderingskaart (BWK) is een inventarisatie van het biologische milieu en de bodembedekking van Vlaanderen en Brussel en wordt gebruikt sinds LATIS 3.0. Om deze dataset bruikbaar te maken voor LATIS werd een vertaling gemaakt tussen de classificatie van de BWK en de LATIS-klassen (zie Bijlage 1).

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\landgebr\Basisdata\landgebruik.shp:
 Shapefile
 (voor heel Vlaanderen)

Updatecyclus:

Telkens wanneer nieuwe BWK beschikbaar is. Updates van BWK komen er op onregelmatige basis.

Processing:

De shapefile van de BWK linken aan de LktEenh_Latis.xlsx (join EENH1 van shapefile met EENH van Excel formulier). Dit Excel formulier geeft voor elke BWK-klasse de overeenkomstige LATIS-klasse en de bijhorende

code. Vervolgens shapefile omzetten naar westelijk en oostelijk(¹) raster (value = Code_1) (zie Bijlage 2 voor de omzetting van een shapefile naar rasterformaat). Al deze bewerkingen dienen uitgevoerd te worden om tot de input voor deze module te komen. Deze bewerkingen moeten manueel uitgevoerd worden in ArcGIS en kunnen dus niet uitgevoerd worden in LATIS zelf. Dit geldt ook voor de volgende modules.

Input voor module 1:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\landgebr\landgebr_bwk_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\landgebr\landgebr_bwk_west.rst

2.1.2 Input: LocWon

Beschrijving:

LocWon is een kaart die de exacte locatie van de woningen in Vlaanderen weergeeft en wordt gebruikt als input sinds LATIS 2.0. In LATIS 4.0 zal de GRB dataset (klasse Gbg) hiervoor gebruikt worden. In het raster komen slechts 2 codes voor: 1 (woning) en 0 (geen woning).

<u>Basisdata:</u>

• <installatiefolder>\BLP_2016_LATIS30_LATIS40\Locatie_woningen\Basisdata\Gbg.shp: shapefile met alle gebouwen voor Vlaanderen (toestand 2014).

Updatecyclus:

Wanneer een nieuwe GRB dataset beschikbaar is (update van GRB gebeurt continu). Het is niet mogelijk om module 1 afzonderlijk te actualiseren. De output van deze module wordt namelijk gebruikt als input in andere modules. Alles moet samen geactualiseerd worden, wat het moeilijk maakt om kleine updates uit te voeren. Praktisch is het slechts zinvol de invoerdata te actualiseren wanneer er een nieuwe versie van de BWK beschikbaar is.

Processing:

- Stap 1: Uit de Gbg.shp enkel de gebouwen selecteren die als 'Type' hoofdgebouw hebben
- Stap 2: De gebouwen verwijderen die op de industriële percelen zijn gelegen (deze data bevindt zich in <installatiefolder>\BLP_2016_LATIS30_LATIS40\industrie\Basisdata\Bedrijventerreinen 2015\bedrterr.shp)
- Stap 3: Shapefile (Hoofdgebouwen.shp) omzetten naar een oostelijk en een westelijk raster (value = Type)

Input voor module 1:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Locatie_woningen\locwon_oost_finaal.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Locatie_woningen\locwon_west_finaal.rst

2.1.3 Input: IndType

Beschrijving:

^{(&}lt;sup>1</sup>) Als we gebruik maken van een 5m-raster dan overschrijdt het aantal kolommen om Vlaanderen te bedekken het maximale aantal kolommen van een Idrisi-raster. Daarom wordt Vlaanderen telkens in een westelijk en oostelijk deel verdeeld.

IndType is een raster dat de industriële gebouwen weergeeft en wordt gebruikt als input sinds LATIS 2.0. Elk gebouw heeft een code naar gelang het type nijverheid (Zware Industrie = 1, Fabriek = 2, Werkplaats = 3 en Overige industrie = 4).

Basisdata:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Locatie_woningen\Basisdata\Gbg.shp: shapefile met alle gebouwen voor Vlaanderen
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\industrie\Basisdata\Bedrijventerreinen
 2015\bedrterr.shp: shapefile met de polygonen van de industriële percelen in Vlaanderen (deze gegevens zijn afkomstig van vlaio)
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\industrie\Basisdata\Excel\BedrijvenopBedrijventer reinen201510.xlsx: formulier met alle bedrijven in Vlaanderen (deze gegevens zijn afkomstig van het Agentschap Innoveren en Ondernemen (VLAIO))
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\industrie\Basisdata\Excel\NACE hoofdklasse naar CODE.xlsx: formulier met de link tussen de hoofdcode en de NACE klasse van industriële terreinen.
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\industrie\Basisdata\Excel\NACE lettercode naar schadewaarde en codetype.xlsx: formulier met de link tussen de NACE code en de code voor industrietype.

Updatecyclus:

Wanneer nieuwe GRB-data of industriële percelen beschikbaar zijn.

Processing:

- Stap 1: Bedrterr.shp (terrein ID) linken aan 'NACE hoofdklasse naar CODE.xlsx' (nr bedrijventerrein). Deze data exporteren naar nieuwe shapefile: <installatiefolder>\BLP_2016_LATIS30_LATIS40\industrie\Basisdata\bedterr_NACE.shp (elk bedrijventerrein heeft de correcte NACE code)
- Stap 2: De gebouwen uit Gbg.shp selecteren die gelegen zijn op de industriële percelen (bedterr_NACE.shp) via intersect tool (zo worden alle attributen mee overgenomen). Data exporteren naar <installatiefolder>\BLP 2016 LATIS30 LATIS40\industrie\Basisdata\ind geb 2015.shp
- Stap 3: ind_geb_2015.shp (Hoofdcode) linken met 'NACE hoofdklasse naar CODE.xlsx' (Hoofdcode). Deze data exporteren naar
 <installatiefolder>\BLP_2016_LATIS30_LATIS40\industrie\Basisdata\ind_geb_2015_v2.shp (Opmerking: let er op dat de velden die voor de link gebruikt worden van hetzelfde type zijn: string, double, ...)
- Stap 4: ind_geb_2015_v2.shp (Code) linken met 'NACE lettercode naar schadewaarde en code type.xlsx' (Lettercode). Deze data exporteren naar <installatiefolder>\BLP_2016_LATIS30_LATIS40\industrie\Basisdata\ind_geb_2015_v3.shp
- Stap 5: ind_geb_2015_v3.shp omzetten naar oostelijk en westelijk raster (value = Code2)

Input voor module 1 en output voor BLP:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\industrie\indtype_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\industrie\indtype_west.rst

2.1.4 Output: Bodem_Poly

Beschrijving:

Dit is de output van module 1 en wordt gebruikt als input voor module 4. Het is een bodemgebruikskaart waarin elke code een bepaald type landgebruik voorstelt.

Updatecyclus:

Telkens wanneer één van de inputrasters van deze module vernieuwd wordt.

Processing:

Uitvoeren van module 1 in LATIS met de beschikbare data voor het westelijke en oostelijke deel.

Output:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lupoly\Versie 4.0\LandUse_poly_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lupoly\ Versie 4.0\LandUse_poly_west.rst

2.2 Module 2: Bodemgebruik lijnen

In deze module wordt aan alle weg- en spoorwegsegmenten op basis van enkele eigenschappen een code gegeven. Die code wordt vervolgens in de schademodule gebruikt om de maximale schade toe te kennen aan elk segment. Er zijn 2 inputrasters en 4 outputrasters in deze module.

Module 1: Land Use Polygons	Input Files		Output Files		
Madula 20 Jacob	Roads (Type)		Roads		
Use Lines	Railways		Land Use (Roads)		
Module 3: Land		<u> </u>		Q	
Use Points			Railways		
				2	
Module 4: Land Use Combination			Land Use (Railways)		
Module 5: Damage Points	Calculate Module				
Module 6: OOA Houses					
Module 7: OOA Vehicles					
	1			Onen	Sava
				open	save

Figuur 2 - Module 2: Bodemgebruik Lijnen

2.2.1 Input: Wegen

Beschrijving:

De wegen zijn beschikbaar als lijnbestand in het Wegenregister van het AGIV. Elke lijn heeft attributen die de eigenschappen van een stuk weg beschrijven.

<u>Basisdata:</u>

• <installatiefolder>\BLP_2016_LATIS30_LATIS40\wegen\Basisdata\Wegen_wegenregister_2015.shp : de wegen afkomstig van het Wegenregister 2015.

Updatecyclus:

Jaarlijks

Processing:

Shapefile Wegen_wegenregister_2015.shp omzetten naar een westelijk en oostelijk raster (value = MORF). Input voor module 2:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Wegen\wegen_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Wegen\wegen_west.rst

2.2.2 Input: Spoorwegen

Beschrijving:

De spoorwegen zijn beschikbaar als lijnbestand bij Infrabel (contactpersoon: Friedel Vanroy).

Basisdata:

• <installatiefolder>\BLP_2016_LATIS30_LATIS40\Spoorwegen\Basisdata\Spw_infr_Vla.shp Updatecyclus:

Wanneer er nieuwe data van Infrabel beschikbaar is. Updates komen er op onregelmatige basis. Processing:

Processing.

Shapefile Spw_infr_Vla.shp omzetten naar een westelijk en oostelijk raster (value = Code).

Input voor module 2:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Spoorwegen\spw_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Spoorwegen\spw_west.rst

2.2.3 Output: Bodem_wegen en Bodem_spoorwegen

Beschrijving:

Dit is een deel van de output van module 2. Het zijn in feite binaire rasters waarbij een pixel de waarde 2 heeft wanneer er een weg respectievelijk een spoorweg is en de waarde -9999 wanneer er geen weg of spoorweg is. Deze output wordt gebruikt als input in module 4.

Updatecyclus:

Telkens wanneer er nieuwe basisdata is.

Processing:

Uitvoeren van module 2 in LATIS met de beschikbare data.

Output:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lulijn\Versie 4.0\Bodem_wegen_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lulijn\Versie 4.0\Bodem_wegen_west.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lulijn\Versie 4.0\Bodem_spoor_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lulijn\Versie 4.0\Bodem_spoor_oost.rst

2.2.4 Output: Wegen en Spoorwegen

Beschrijving:

Dit is een deel van de output van module 2. Deze rasters geven aan alle lijnsegmenten een code die overeenkomt met een bepaalde schade. Deze rasters worden als input gebruikt in de module voor schadeberekening.

Updatecyclus:

Telkens wanneer er nieuwe basisdata is.

Processing:

Uitvoeren van module 2 in LATIS met de beschikbare data voor het westelijke en oostelijke deel.

Output:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lulijn\Versie 4.0\wegen_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lulijn\Versie 4.0\wegen_west.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lulijn\Versie 4.0\spoorwegen_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lulijn\Versie 4.0\spoorwegen_west.rst

2.3 Module 3: Bodemgebruik punten

In deze module worden alle puntelementen samengevoegd in één raster dat als input dient voor module 4. Als input voor module 3 worden drie datasets opgebouwd:

- 1 dataset met puntelementen voorgesteld als punt
- 1 dataset met puntelementen voorgesteld als polygoon
- 1 dataset met waterwinning, voorgesteld als punten

Module 1: Land Use Polygons	Input Files	Output Files	
Module 2: Land Use Lines	Points Elements (Points)	Land Use (Points)	
Module 3: Land Use Points	Point Elements (Polygons) Max. Damage Water Collection	No Points	
Module 4: Land Use Combination	Calculate Module		
Module 5: Damage Points			
Module 6: OOA Houses			
Module 7: OOA Vehicles			
			Open Save

Figuur 3 - Module 3: Bodemgebruik Punten

2.3.1 Puntelementen voorgesteld als punt

Benzinestation

Beschrijving:

Dit bestand geeft de benzinestations in Vlaanderen als punten.

Basisdata:

• <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\NavStreets 2014\AutoSvc_lam72.shp (deze data werd verkregen uit de NAVSTREETS Vector dataset).

Updatecyclus:

Wanneer er een nieuwe alternatieve data bron beschikbaar is. De update uit 2014 was de laatste update van de NAVSTREETS dataset. Voorlopig is er dus geen alternatief en zullen er geen verdere updates komen.

Processing:

- Stap 1: op basis van attribuut 'FAC_TYPE' uit AutoSvc_lam72.shp de punten selecteren voor benzinestations (FAC_TYPE = 5540).
- Stap 2: de benzinestations die gelegen zijn in Vlaanderen selecteren (functie 'Clip' in ArcGIS). Deze punten exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Finaal\220_Benzinestation\220_benzinestation.shp

Molen

Beschrijving:

Dit bestand geeft de windmolens in Vlaanderen weer als punten.

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\TOP50_NGI\CO_PointBuilding_50.shp: shapefile met gebouwen die als punten worden voorgesteld (deze data werd aangekocht bij het NGI).

Updatecyclus:

Wanneer er een nieuwe TOP50-vGIS dataset beschikbaar is of alternatief

Processing:

 Stap 1: op basis van attribuut 'BuildUse' uit CO_PointBuilding_50.shp de punten selecteren voor windmolens (BuildUse = 6). De punten omzetten naar Lambert 72 en exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Finaal\240_Molen\240_molen.shp

Windturbine

Beschrijving:

Dit bestand geeft de windturbines in Vlaanderen weer als punten.

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\TOP50_NGI\CO_ParticularPointConstruction_50.shp: shapefile met bijzonder constructies die als punten worden voorgesteld (deze data werd aangekocht bij het NGI).

Updatecyclus:

Wanneer er een nieuwe TOP50-vGIS dataset beschikbaar is of alternatief.

Processing:

Zendinstallatie

Beschrijving:

Dit bestand geeft de zendinstallaties in Vlaanderen weer als punten.

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\Andere\Zendinstallaties\zendinstallaties_vla.shp: shapefile met zendinstallaties die als punten worden voorgesteld (deze data werd verkregen bij het Belgisch Instituut voor Postdiensten en Telecommunicatie (BIPT)).

Updatecyclus:

Jaarlijks

Processing:

• Stap 1: De zendinstallaties verwijderen die gelegen zijn op gebouwpercelen (Gbg). Vervolgens de data exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Finaal\261_Zendinstallatie\261_zendinstallatie.shp

Ondergrondse parkeergarage

Beschrijving:

Dit bestand geeft de Ondergrondse parkeergarages in Vlaanderen als punten.

Basisdata:

• <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\NavStreets 2014\Parking_lam72.shp (deze data werd verkregen uit de NAVSTREETS Vector dataset).

Updatecyclus:

Wanneer er een nieuwe alternatieve data bron beschikbaar is. De update uit 2014 was de laatste update van de NAVSTREETS dataset.

Processing:

- Stap 1: op basis van attribuut 'FAC_TYPE' uit Parking_lam72.shp de punten selecteren voor ondergrondse parkeergarages (FAC_TYPE = 7521).
- Stap 2: de ondergrondse parkeergarages die gelegen zijn in Vlaanderen selecteren (functie 'Clip' in ArcGIS). Deze punten exporteren naar:
 <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\Finaal\281_Ondergrondse_parkeergarage\281_ondergrondse_parkeergarage.shp

2.3.2 Puntelementen voorgesteld als polygoon

Ziekenhuis

Beschrijving:

Dit bestand geeft de ziekenhuizen in Vlaanderen weer als GRB-gebouwen (klasse Gbg).

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\TOP50_NGI\CO_PolyBuilding_50.shp: shapefile met gebouwen die als polygonen worden voorgesteld (data werd aangekocht bij het Nationaal Geografisch Instituut (NGI)).

Updatecyclus:

Wanneer er een nieuwe TOP50-vGIS dataset beschikbaar is of alternatief.

Processing:

- Stap 1: op basis van attribuut 'BuildUse' uit CO_PolyBuilding_50.shp de polygonen selecteren voor ziekenhuizen (BuildUse = 22). De polygonen omzetten naar Lambert 72 en exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Tussenfiles\Ziekenhuis_top50_lam72.shp
- Stap 2: Ziekenhuis_top50_lam72.shp omzetten naar centroid (functie 'Feature to Point' in ArcGIS) en de overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Vervolgens alle GRB gebouwen (klasse Gbg) binnen de geselecteerde administratieve percelen selecteren ('Select by location' in ArcGis). Niet alle centroïden liggen binnen een Adp, dus voor deze punten worden de dichtstbijzijnde GRB gebouwen (klasse Gbg) geselecteerd (functie 'Near' in ArcGIS). Dan alle gebouwen samenvoegen en exporteren naar:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie

4.0\Basisdata\Finaal\210_Ziekenhuis\210_Ziekenhuis.shp

Gemeentehuis

Beschrijving:

Dit bestand geeft de gemeentehuizen in Vlaanderen weer als GRB-gebouwen (klasse Gbg).

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\TOP50_NGI\CO_PolyBuilding_50.shp: shapefile met gebouwen die als polygonen worden voorgesteld (data werd aangekocht bij het NGI).

Updatecyclus:

Wanneer er een nieuwe TOP50-vGIS dataset beschikbaar is of alternatief

Processing:

- Stap 1: op basis van attribuut 'BuildUse' uit CO_PolyBuilding_50.shp de polygonen selecteren voor gemeentehuizen (BuildUse = 15). De polygonen omzetten naar Lambert 72 en exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Tussenfiles\Gemeentehuis_top50_lam72.shp
- Stap 2: Gemeentehuis_top50_lam72.shp omzetten naar centroid (functie 'Feature to Point' in ArcGIS) en de overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Vervolgens alle GRB gebouwen (klasse Gbg) binnen de geselecteerde administratieve percelen selecteren ('Select by location' in ArcGIS). Niet alle centroïden liggen binnen een Adp, dus voor deze punten

worden de dichtstbijzijnde GRB gebouwen (klasse Gbg) geselecteerd (functie 'Near' in ArcGIS). Dan alle gebouwen samenvoegen en exporteren naar:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie

4.0\Basisdata\Finaal\211_Gemeentehuis\211_gemeentehuis.shp

Brandweerkazerne

Beschrijving:

Dit bestand geeft de brandweerkazernes in Vlaanderen weer als GRB-gebouwen (klasse Gbg).

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\TOP50_NGI\CO_PolyBuilding_50.shp: shapefile met gebouwen die als polygonen worden voorgesteld (data werd aangekocht bij het NGI).

Updatecyclus:

Wanneer er een nieuwe TOP50-vGIS dataset beschikbaar is of alternatief

Processing:

- Stap 1: op basis van attribuut 'BuildUse' uit CO_PolyBuilding_50.shp de polygonen selecteren voor brandweerkazernes (BuildUse = 11). De polygonen omzetten naar Lambert 72 en exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Tussenfiles\Brandweerkazerne_top50_lam72.shp
- Stap 2: Brandweerkazerne_top50_lam72.shp omzetten naar centroid (functie 'Feature to Point' in ArcGIS) en de overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Vervolgens alle GRB gebouwen (klasse Gbg) binnen de geselecteerde administratieve percelen selecteren ('Select by location' in ArcGIS). Niet alle centroïden liggen binnen een Adp, dus voor deze punten worden de dichtstbijzijnde GRB gebouwen (klasse Gbg) geselecteerd (functie 'Near' in ArcGIS). Dan alle gebouwen samenvoegen en exporteren naar:
 <installatiefolder>\BLP 2016 LATIS30 LATIS40\puntelementen\Versie

4.0\Basisdata\Finaal\212_Brandweerkazerne\212_brandweerkazerne.shp

Politiekazerne

Beschrijving:

Dit bestand geeft de politiekazernes in Vlaanderen weer als GRB-gebouwen (klasse Gbg).

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\TOP50_NGI\CO_PolyBuilding_50.shp: shapefile met gebouwen die als polygonen worden voorgesteld (data werd aangekocht bij het NGI).

Updatecyclus:

Wanneer er een nieuwe TOP50-vGIS dataset beschikbaar is of alternatief

Processing:

 Stap 1: op basis van attribuut 'BuildUse' uit CO_PolyBuilding_50.shp de polygonen selecteren voor politiekazernes (BuildUse = 13). De polygonen omzetten naar Lambert 72 en exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Tussenfiles\Politiekazerne_top50_lam72.shp Stap 2: Politiekazerne_top50_lam72.shp omzetten naar centroid (functie 'Feature to Point' in ArcGIS) en de overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Vervolgens alle GRB gebouwen (klasse Gbg) binnen de geselecteerde administratieve percelen selecteren ('Select by location' in ArcGIS). Niet alle centroïden liggen binnen een Adp, dus voor deze punten worden de dichtstbijzijnde GRB gebouwen (klasse Gbg) geselecteerd (functie 'Near' in ArcGIS). Dan alle gebouwen samenvoegen en exporteren naar:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Finaal\213_Politiekazerne\213_politiekazerne.shp

Gevangenis

Beschrijving:

Dit bestand geeft de gevangenissen in Vlaanderen weer als GRB-gebouwen (klasse Gbg).

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\TOP50_NGI\CO_PolyBuilding_50.shp: shapefile met gebouwen die als polygonen worden voorgesteld (data werd aangekocht bij het NGI).

Updatecyclus:

Wanneer er een nieuwe TOP50-vGIS dataset beschikbaar is of alternatief

Processing:

- Stap 1: op basis van attribuut 'BuildUse' uit CO_PolyBuilding_50.shp de polygonen selecteren voor gevangenissen (BuildUse = 14). De polygonen omzetten naar Lambert 72 en exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\Tussenfiles\Gevangenis_top50_lam72.shp
- Stap 2: Gevangenis_top50_lam72.shp omzetten naar centroid (functie 'Feature to Point' in ArcGIS) en de overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Vervolgens alle GRB gebouwen (klasse Gbg) binnen de geselecteerde administratieve percelen selecteren ('Select by location' in ArcGIS). Niet alle centroïden liggen binnen een Adp, dus voor deze punten worden de dichtstbijzijnde GRB gebouwen (klasse Gbg) geselecteerd (functie 'Near' in ArcGIS). Dan alle gebouwen samenvoegen en exporteren naar:
 <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie

4.0\Basisdata\Finaal\214_Gevangenis\214_gevangenis.shp

Treinstation

Beschrijving:

Dit bestand geeft de treinstations in Vlaanderen weer als GRB-gebouwen (klasse Gbg).

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\TOP50_NGI\CO_PolyBuilding_50.shp: shapefile met gebouwen die als polygonen worden voorgesteld (data werd aangekocht bij het NGI).

Updatecyclus:

Wanneer er een nieuwe TOP50-vGIS dataset beschikbaar is of alternatief.

Processing:

- Stap 1: op basis van attribuut 'BuildUse' uit CO_PolyBuilding_50.shp de polygonen selecteren voor treinstations (BuildUse = 7). De polygonen omzetten naar Lambert 72 en exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Tussenfiles\Treinstation top50 lam72.shp
- Stap 2: Treinstation_top50_lam72.shp omzetten naar centroid (functie 'Feature to Point' in ArcGIS) en de overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Vervolgens alle GRB gebouwen (klasse Gbg) binnen de geselecteerde administratieve percelen selecteren ('Select by location' in ArcGIS). Niet alle centroïden liggen binnen een Adp, dus voor deze punten worden de dichtstbijzijnde GRB gebouwen (klasse Gbg) geselecteerd (functie 'Near' in ArcGIS). Dan alle gebouwen samenvoegen en exporteren naar:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie

4.0\Basisdata\Finaal\221_Treinstation\221_treinstation.shp

Winkelcentrum

Beschrijving:

Dit bestand geeft de Winkelcentra in Vlaanderen weer als GRB-gebouwen (klasse Gbg).

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\Andere\Winkelcentrum\winkelcentrum_punt.shp: shapefile met winkelcentra die als punten worden voorgesteld.

Updatecyclus:

Wanneer er een nieuwe dataset beschikbaar is of alternatief.

Processing:

 Stap 1: De overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Vervolgens alle GRB gebouwen (klasse Gbg) binnen de geselecteerde administratieve percelen selecteren ('Select by location' in ArcGIS). Niet alle centroïden liggen binnen een Adp, dus voor deze punten worden de dichtstbijzijnde GRB gebouwen (klasse Gbg) geselecteerd (functie 'Near' in ArcGIS). Dan alle gebouwen samenvoegen en exporteren naar:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Finaal\222_Winkelcentrum\222_winkelcentrum.shp

Museum

Beschrijving:

Dit bestand geeft de musea in Vlaanderen weer als GRB-gebouwen (klasse Gbg).

<u>Basisdata:</u>

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\Andere\Musea\Musea_Vlaanderen.shp: shapefile met de locaties van de musea voorgesteld als punten (deze data werd verkregen bij het Vlaams Steunpunt voor Cultureel Erfgoed (FARO)).

Updatecyclus:

Jaarlijks

Processing:

Stap 1: De overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Vervolgens alle GRB gebouwen (klasse Gbg) binnen de geselecteerde administratieve percelen selecteren ('Select by location' in ArcGIS). Niet alle centroïden liggen binnen een Adp, dus voor deze punten worden de dichtstbijzijnde GRB gebouwen (klasse Gbg) geselecteerd (functie 'Near' in ArcGIS). Dan alle gebouwen samenvoegen en exporteren naar:
 <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\Finaal\223_Museum\223_museum.shp

Zoo

Beschrijving:

Dit bestand geeft de dierenparken in Vlaanderen weer als administratieve percelen (klasse Adp).

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\TOP50_NGI\ZO_ParticularZone_50.shp: shapefile met bijzondere zones die als polygonen worden voorgesteld (deze data werd aangekocht bij het NGI).

Updatecyclus:

Wanneer er een nieuwe TOP50-vGIS dataset beschikbaar is of alternatief.

Processing:

- Stap 1: op basis van attribuut 'BuildUse' uit ZO_ParticularZone_50.shp de polygonen selecteren voor dierenparken (BuildUse = 28). De polygonen omzetten naar Lambert 72 en exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Tussenfiles\Dierenpark_top50_lam72.shp
- Stap 2: Dierenpark_top50_lam72.shp omzetten naar centroid (functie 'Feature to Point' in ArcGIS). Handmatig nog enkele dierenparken toevoegen (Beullens *et al.*, 2016) en de overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Deze data exporteren naar:
 <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\Finaal\224_Zoo\224_Zoo.shp

Pretpark

<u>Beschrijving:</u>

Dit bestand geeft de pretparken in Vlaanderen weer als administratieve percelen (klasse Adp).

Basisdata:

• BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\TOP50_NGI\ZO_ParticularZone_50.shp: shapefile met bijzondere zones die als polygonen worden voorgesteld (deze data werd aangekocht bij het NGI).

Updatecyclus:

Wanneer er een nieuwe TOP50-vGIS dataset beschikbaar is of alternatief.

Processing:

 Stap 1: op basis van attribuut 'BuildUse' uit ZO_ParticularZone_50.shp de polygonen selecteren voor pretparken (BuildUse = 27). De polygonen omzetten naar Lambert 72 en exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Tussenfiles\Pretpark_top50_lam72.shp Stap 2: Pretpark_top50_lam72.shp omzetten naar centroid (functie 'Feature to Point' in ArcGIS). Handmatig nog enkele pretparken toevoegen (Beullens *et al.*, 2016) en de overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Deze data exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Finaal\225_Pretpark\225_pretpark.shp

Kerk

Beschrijving:

Dit bestand geeft de kerken in Vlaanderen weer als GRB-gebouwen (klasse Gbg).

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\TOP50_NGI\CO_PointBuilding_50.shp: shapefile met gebouwen die als punten worden voorgesteld (deze data werd aangekocht bij het NGI).

Updatecyclus:

Wanneer er een nieuwe TOP50-vGIS dataset beschikbaar is of alternatief

Processing:

- Stap 1: op basis van attribuut 'BuildUse' uit CO_PointBuilding_50.shp de punten selecteren voor kerken (BuildUse = 4). De punten omzetten naar Lambert 72 en exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Tussenfiles\kerk_top50_lam72.shp
- Stap 2: De overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Vervolgens alle GRB gebouwen (klasse Gbg) binnen de geselecteerde administratieve percelen selecteren ('Select by location' in ArcGIS). Niet alle centroïden liggen binnen een Adp, dus voor deze punten worden de dichtstbijzijnde GRB gebouwen (klasse Gbg) geselecteerd (functie 'Near' in ArcGIS). Dan alle gebouwen samenvoegen en exporteren naar: ..BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Finaal\230_Kerk\230_kerk.shp

Abdij en klooster

<u>Beschrijving:</u>

Dit bestand geeft de abdijen en kloosters in Vlaanderen weer als GRB-gebouwen (klasse Gbg).

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\Andere\Abdij_klooster\Abdij_klooster_punt.shp: shapefile met abdijen en kloosters die als punten worden voorgesteld (deze data werd verkregen bij de Unie van Religieuzen van Vlaanderen (URV)).

Updatecyclus:

Wanneer er een nieuwe dataset beschikbaar is of alternatief.

Processing:

 Stap 1: De overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Vervolgens alle GRB gebouwen (klasse Gbg) binnen de geselecteerde administratieve percelen selecteren ('Select by location' in ArcGIS). Niet alle centroïden liggen binnen een Adp, dus voor deze punten worden de dichtstbijzijnde GRB gebouwen (klasse Gbg) geselecteerd (functie 'Near' in ArcGIS). Dan alle gebouwen samenvoegen en exporteren naar:

<installatiefolder>\ BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Finaal\231_Abdij_Klooster\231_abdij_klooster.shp

Schoolgebouw

Beschrijving:

Dit bestand geeft de scholen in Vlaanderen weer als GRB-gebouwen (klasse Gbg).

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\TOP50_NGI\CO_PolyBuilding_50.shp: shapefile met gebouwen die als polygonen worden voorgesteld (deze data werd aangekocht bij het NGI).

Updatecyclus:

Wanneer er een nieuwe TOP50-vGIS dataset beschikbaar is of alternatief.

Processing:

- Stap 1: op basis van attribuut 'BuildUse' uit CO_PolyBuilding_50.shp de polygonen selecteren voor scholen (BuildUse = 18). De polygonen omzetten naar Lambert 72 en exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Tussenfiles\Schoolgebouw_top50_lam72.shp
- Stap 2: Schoolgebouw_top50_lam72.shp omzetten naar centroid (functie 'Feature to Point' in ArcGIS) en de overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Vervolgens alle GRB gebouwen (klasse Gbg) binnen de geselecteerde administratieve percelen selecteren ('Select by location' in ArcGIS). Niet alle centroïden liggen binnen een Adp, dus voor deze punten worden de dichtstbijzijnde GRB gebouwen (klasse Gbg) geselecteerd (functie 'Near' in ArcGIS). Dan alle gebouwen samenvoegen en exporteren naar:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Finaal\250_Schoolgebouw\250_schoolgebouw.shp

Rusthuis

Beschrijving:

Dit bestand geeft de rusthuizen in Vlaanderen weer als GRB-gebouwen (klasse Gbg).

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\Andere\Rusthuis\Rusthuizen.shp: shapefile met rusthuizen die als punten worden voorgesteld (deze data werd verkregen bij Agentschap Zorg en Gezondheid).

Updatecyclus:

Jaarlijks

Processing:

 Stap 1: De overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Vervolgens alle GRB gebouwen (klasse Gbg) binnen de geselecteerde administratieve percelen selecteren ('Select by location' in ArcGIS). Niet alle centroïden liggen binnen een Adp, dus voor deze punten worden de dichtstbijzijnde GRB gebouwen (klasse Gbg) geselecteerd (functie 'Near' in ArcGIS). Dan alle gebouwen samenvoegen en exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie

4.0\Basisdata\Finaal\251_Rusthuis\251_rusthuis.shp

Kasteel

Beschrijving:

Dit bestand geeft de kastelen in Vlaanderen weer als GRB-gebouwen (klasse Gbg).

<u>Basisdata:</u>

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\TOP50_NGI\CO_PointBuilding_50.shp: shapefile met gebouwen die als punten worden voorgesteld (deze data werd aangekocht bij het NGI).

Updatecyclus:

Wanneer er een nieuwe TOP50-vGIS dataset beschikbaar is of alternatief

Processing:

- Stap 1: op basis van attribuut 'BuildUse' uit CO_PointBuilding_50.shp de punten selecteren voor kastelen (BuildUse = 2). De punten omzetten naar Lambert 72 en exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Tussenfiles\Kasteel_top50_lam72.shp
- Stap 2: De overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Vervolgens alle GRB gebouwen (klasse Gbg) binnen de geselecteerde administratieve percelen selecteren ('Select by location' in ArcGIS). Niet alle centroïden liggen binnen een Adp, dus voor deze punten worden de dichtstbijzijnde GRB gebouwen (klasse Gbg) geselecteerd (functie 'Near' in ArcGIS). Dan alle gebouwen samenvoegen en exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie

4.0\Basisdata\Finaal\252_Kasteel\252_kasteel.shp

Elektriciteitsinstallatie

Beschrijving:

Dit bestand geeft de elektriciteitscentrales in Vlaanderen weer als administratieve percelen (klasse Adp).

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\TOP50_NGI\Z0_ParticularZone_50.shp: shapefile met bijzondere zones die als polygonen worden voorgesteld (deze data werd aangekocht bij het NGI).

Updatecyclus:

Wanneer er een nieuwe TOP50-vGIS dataset beschikbaar is of alternatief.

Processing:

- Stap 1: op basis van attribuut 'BuildUse' uit ZO_ParticularZone_50.shp de polygonen selecteren voor elektriciteitsinstallaties (BuildUse = 3, 4 en 5). De polygonen omzetten naar punten (Lambert 72) en exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Tussenfiles\Elektriciteitsinstallatie_top50_lam72.shp
- Stap 2: De overeenkomstige GRB administratieve percelen (klasse Adp) selecteren. Deze data exporteren naar: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\Finaal\260_Elektriciteits_installatie\260_Elektriciteits_installatie.shp

2.3.3 Input: Puntelementen punten (pnt_pnt)

Beschrijving:

pnt_pnt is een raster dat de puntelementen weergeeft die voorgesteld worden als punten: Benzinestation, Molen, Windturbine, Zendinstallatie, Ondergrondse parkeergarage en Waterwinning.

Basisdata: Zie 2.3.1

Updatecyclus:

Wanneer er nieuwe bron data bestaat voor één van de puntelementen.

Processing:

- Stap 1: De puntelementen samenvoegen en exporteren naar een nieuwe shapefile: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\pnt_pnt.shp
- Stap 2: pnt_pnt.shp omzetten naar oostelijk en westelijk raster (value = Code)

Input voor module 3:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\pnt_pnt_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\pnt_pnt_west.rst

2.3.4 Input: Puntelementen polygonen (pnt_pol)

Beschrijving:

pnt_pol is een raster dat de puntelementen weergeeft die voorgesteld worden als polygonen (GRB gebouwen of GRB administratieve percelen): Ziekenhuis, Gemeentehuis, Brandweerkazerne, Politiekazerne, Gevangenis, Treinstation, Winkelcentrum, Museum, Zoo, Pretpark, Kerk, Abdij ofKlooster, Schoolgebouw, Rusthuis, Kasteel en Elektriciteitsinstallatie.

Basisdata: Zie 2.3.2

Updatecyclus:

Wanneer er nieuwe bron data bestaat voor één van de puntelementen.

Processing:

- Stap 1: De puntelementen samenvoegen en exporteren naar een nieuwe shapefile: <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\Basisdata\pnt_pol.shp
- Stap 2: pnt_pol.shp omzetten naar oostelijk en westelijk raster (value = Code)

Input voor module 3:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\pnt_pol_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\pnt_pol_west.rst

2.3.5 Input: Waterwinning

Beschrijving:

Dit is een raster dat de maximale schade van waterwinningen weer geeft. Het raster voor waterwinning werd voorlopig niet aangepast (Deckers *et al.,* 2009).

Input voor module 3 en :

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\waterwinningen\v3_oost_ww_maxschade.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\waterwinningen\v3_west_ww_maxschade.rst

2.3.6 Output: Bodem_punten

Beschrijving:

Dit is een deel van de output van module 3. Het is een raster waarbij een pixel de waarde 0 heeft wanneer er geen puntelement is. Wanneer er wel een puntelement is, heeft de pixel de waarde van de puntelementcode. Deze output wordt gebruikt als input in module 4.

Updatecyclus:

Telkens wanneer er nieuwe basisdata is.

Processing:

Uitvoeren van module 3 (Bodemgebruik Punten) in LATIS met de beschikbare data.

Output:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lupunt\Versie 4.0\Bodem_punten_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lupunt\Versie 4.0\Bodem_punten_west.rst

2.3.7 Output: Geen_punten

Beschrijving:

Dit is een deel van de output van module 3. Dit is een binair raster dat de waarde 0 heeft wanneer er een puntelement is en de waarde 1 wanneer er geen puntelement is. Dit raster dient als input voor de module van de schadeberekening.

Updatecyclus:

Telkens wanneer er nieuwe basisdata is.

Processing:

Uitvoeren van module 3 (Bodemgebruik Punten) in LATIS met de beschikbare data voor het westelijke en oostelijke deel.

Output:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lupunt\Versie 4.0\Geen_pnt_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lupunt\Versie 4.0\Geen_pnt_west.rst

2.4 Module 4: Bodemgebruik combinatie

In module 4 wordt de output van de vorige 3 modules (Bodemgebruik polygonen, Bodemgebruik Lijnen en Bodemgebruik Punten) gecombineerd tot één gezamenlijke bodemgebruikskaart. Vervolgens wordt er voor elk landgebruik een binaire kaart gemaakt (1 als dat landgebruik voorkomt in de pixel, 0 als het niet voorkomt).

dule 1: Land	Input Files		Output Files	
lse Polygons	Land Use (Points)		Pastures	
		<u>2</u>		
Module 2: Land	Land Use (Railways)		Crop Land	
Use Lines		<u></u>		
	Land Use (Roads)		Recreations	
Module 3: Land		<u>2</u>		
Use Points	Land Use (Polygons)		Airport	
		<u> </u>		
Module 4: Land	River Network		Build-up Area (Class 1)	
Jse Combination		<u></u>		
			Build-up Area (Class 2)	
Nodule 5: Damage	Calculate Module			
Points			Industry (Class 1)	
Module 6: 004			Industry (Class 2)	
Houses				
			Industry (Class 1 + 2)	
Modula 7: 004				
Vehicles			Infrastructure	
				Q
				Open Save

2.4.1 Input: Bodem_poly, Bodem_wegen, Bodem_spoorwegen en Bodem_punten

Deze inputbestanden zijn de outputbestanden van de 3 vorige modules (zie paragrafen 2.1.4, 2.2.3 en 2.3.6).

2.4.2 Output: Bodemgebruik

Beschrijving:

Dit is een outputraster van module 4. Het is een combinatie van de 4 inputbestanden.

Updatecyclus:

Telkens wanneer er nieuwe inputbestanden zijn.

Processing:

Uitvoeren van module 4 in LATIS met de beschikbare data.

Output:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Bodemgebruik_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Bodemgebruik_west.rst

2.4.3 Output: Akkerbouw, Bebouwing I, Bebouwing II, Industrie I, Weiland, ...

Beschrijving:

Dit zijn de andere outputrasters van module 4. Deze worden gebruikt als inputbestanden voor de volgende modules.

<u>Updatecyclus:</u>

Telkens wanneer er nieuwe inputbestanden zijn.

Processing:

Uitvoeren van module 4 in LATIS met de beschikbare data voor het westelijke en oostelijke deel.

Output:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Akkerbouw_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\ Akkerbouw_west.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Weiland_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Weiland_west.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Recreatie_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Recreatie_west.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Luchthaven1_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Luchthaven1_west.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Bebouwing1_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Bebouwing1_west.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Bebouwing2_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Bebouwing2_west.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Industrie1_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Industrie1_west.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Industrie2_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Industrie2_west.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Infrastructuur_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lucom\Versie 4.0\Infrastructuur_west.rst

2.5 Module 5: Schade puntelementen

In module 5 wordt de inputbestanden Puntelementen polygonen (pnt_pol) en Puntelementen punten (pnt_pnt) gecombineerd met vijf tabellen die voor de verschillende puntelementen de maximale schade bevatten. De output van deze module zijn vier rasters die de maximale schade van alle puntelementen bevatten.

Figuur 5 - Module 5: Schade puntelementen

2.5.1 Input: Puntelementen polygonen en Puntelementen punten

Deze input werd al opgemaakt voor de uitvoering van module 3 (zie paragrafen 2.3.3 en 2.3.4).

2.5.2 Input: Punten_bedrijven, Punten_woningen, Punten_elek_comm en Punten_metro_park

Beschrijving:

Dit zijn tabellen die voor de verschillende puntelementen de maximale schade bevatten. De tabellen bevatten telkens een kolom met de code van het puntelement en een kolom met de maximale schade van het puntelement. Er zijn 5 tabellen die zich op de LATIS-share bevinden (L:\):

- <installatiefolder>\tabellen 2015\punt_pol_woningen.avl
- <installatiefolder>\tabellen 2015\punt_pol_bedrijven.avl
- <installatiefolder>\tabellen 2015\punt_punten_bedrijven.avl
- <installatiefolder>\tabellen 2015\punten_elek_comm.avl
- <installatiefolder>\tabellen 2015\punten_metr_park.avl

Updatecyclus:

Als er nieuwe maximale schadewaarden beschikbaar zijn voor de puntelementen. Deze meeste schadewaarden zijn afhankelijk van de ABEX-index. Deze index wordt twee keer per jaar aangepast (mei en november). Er wordt geopteerd om de gegevens jaarlijks te updaten.

2.5.3 Output: Max_s_bedrijf, Max_s_woning, Max_s_elek_comm, Max_s_metr_park

Beschrijving:

Dit zijn de outputrasters van deze module. Ze bevatten de maximale schade van de verschillende puntelementen.

Updatecyclus:

Wanneer de bronbestanden van de puntelementen wijzigen.

Processing:

Uitvoeren van deze module in LATIS voor het westelijke en oostelijke deel.

Output:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\schadepunten\Versie 4.0\Max_s_bedrijf_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\schadepunten\Versie 4.0\Max_s_bedrijf_west.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\schadepunten\Versie 4.0\Max_s_woning_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\schadepunten\Versie 4.0\Max_s_woning_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\schadepunten\Versie 4.0\Max_s_elek_comm_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\schadepunten\Versie 4.0\Max_s_elek_comm_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\schadepunten\Versie 4.0\Max_s_metr_park_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\schadepunten\Versie 4.0\Max_s_metr_park_oost.rst

2.6 Module 6: OOA Woningen

Module 1: Land Use Polygons Input Files **Output Files** Statistical Sector Number Max. Damage (Houses) Module 2: Land Use Lines <u>|</u> Q Number of Houses (Per Statistical Sector) Max, Damage (Household Furniture) Q 🔁 🔍 Module 3: Land Use Points Housing Prices 2 Build-up Area (Class 1) Module 4: Land Use Combination 2 Module 5: Damage Points Calculate Module Module 6: OOA Module 7: OOA Vehicles Open Save

In module 6 wordt de maximale schade aan woningen en inboedel bepaald.

Figuur 6 - Module 6: OOA Woningen

2.6.1 Input: Ssnr

Beschrijving:

Dit is een raster waarin elke statistische sector een uniek id heeft.

Basisdata:

 <installatiefolder>\BLP_2016_LATIS30_LATIS40\ssnr\Basisdata\Statsec_Vla.shp: shapefile met de statistische sectoren (Toestand 01/01/2011)

Updatecyclus:

De statistische sectoren worden aangepast bij een nieuwe volkstelling (elke 10 jaar). Er zullen geen volkstellingen meer volgen, dus deze data kan behouden blijven.

Processing:

Omzetten van de shapefile naar een oostelijk, westelijk en midden (zie 2.6.2) raster.

Input voor module 6:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\ssnr\ssnr_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\ssnr\ssnr_west.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\ssnr\Midden\ssnr_mid.rst

2.6.2 Input: Woning_aant

Beschrijving:

Raster dat per statische sector het aantal aanwezige woningen geeft.

<u>Basisdata:</u>

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\ssnr\Basisdata\Statsec_Vla.shp: shapefile met de statische sectoren
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Locatie_woningen\Basisdata\Hoofdgebouwen.shp: shapefile met de gebouwen (industriële gebouwen niet meegerekend).

Updatecyclus:

Bij een update van het GRB.

Processing:

- Stap 1: per statistische sector het aantal hoofdgebouwen tellen (http://support.esri.com/technicalarticle/000008599). Deze data exporteren naar
 <installatiefolder>\BLP_2016_LATIS30_LATIS40\Aantwon\Basisdata\aantwon_SS.shp
- Stap 2: aantwon_SS.shp omzetten naar westelijk, oostelijk en midden raster met als value 'Sum_Count'.

Aangezien de gemeenten op de grens van het westelijk en oostelijk gedeelte een overschatting hebben van het aantal woningen per oppervlakte-eenheid (het aantal woningen van een gemeente op de grens wordt immers eerst verdeeld over de oppervlakte in het westelijk gedeelte van de gemeente en vervolgens wordt ditzelfde aantal ook verdeeld over het oostelijk gedeelte van de gemeente) moet deze module ook voor een middengedeelte uitgerekend worden (dit zijn alle gemeenten die een gedeelte in het westen en het oosten liggen).

Het middengedeelte vervolgens combineren met zowel het westelijk als het oostelijk gedeelte.

Werkwijze:

• Voor elke input file van de module wordt uit het oostelijk deel een "midoostelijk" deel afgeleid en uit het westelijk deel een "midwestelijk" deel (figuur 7). Dit gebeurt in Idrisi met behulp van de functie WINDOW.

Figuur 7 - Van oostelijk raster naar "midoostelijk" raster met functie WINDOW in Idrisi

• Het "midoostelijk" raster en "midwestelijk" raster worden samengevoegd tot een midden raster met de functie CONCAT in Idrisi (figuur 8).

Figuur 8 - Aanmaak midden raster Idrisi met de functie CONCAT

- Module 6 uitvoeren in LATIS met voor alle input files een midden raster.
- Het midden raster (output) opsplitsen in een "midoostelijk" en "midwestelijk" raster met de functie WINDOW in Idrisi.
- Het "midoostelijk" en "midwestelijk" raster respectievelijk combineren met het oostelijk en westelijk raster in Idrisi met de functie CONCAT.

Input voor module 6:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Aantwon\aantwon_oost_recl.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Aantwon\aantwon_west_recl.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Aantwon\Midden\aantwon_mid.rst

2.6.3 Input: Woning_prijs

Beschrijving:

Dit is een raster met per gemeente de gemiddelde woningprijs. Deze data werd afgehaald als excelformulier op <u>http://statbel.fgov.be</u> op 5/10/2015.

Basisdata:

• <installatiefolder>\BLP_2016_LATIS30_LATIS40\Woningen\woningprijs_2014.shp: shapefile met de gemiddelde woningprijs voor elke gemeente in Vlaanderen.

Updatecyclus:

Elk jaar wanneer vastgoedprijzen gepubliceerd worden (typisch wordt in september de data van het vorige jaar gepubliceerd).

Processing:

Omzetten van de shapefile naar een westelijk, oostelijk en midden raster met als value 'Prijs_2014'.

Input voor module 6:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Woningen\wonprijs_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Woningen\wonprijs_west.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Woningen\wonprijs_mid.rst

2.6.4 Input: Bebouwing I

Deze data komt uit de module 'Bodemgebruik Combinatie'.

2.6.5 Output: Max_woningen en Max_inboedel

Beschrijving:

Output van module 6. Deze rasters geven de maximale schade weer van woningen en van inboedel en worden gebruikt als input voor de schademodule.

Updatecyclus:

Wanneer nieuwe inputdata beschikbaar is.

Processing:

Uitvoeren van module 6 in LATIS voor westelijk, oostelijk en midden (cfr. 2.6.2) gedeelte.

Output:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\ooawon\Versie 4.0\maxwon_oost_finaal_recl.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\ooawon\Versie 4.0\maxwon_west_finaal_recl.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\ooawon\Versie 4.0\maxinb_oost_finaal_recl.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\ooawon\Versie 4.0\maxinb_west_finaal_recl.rst

2.7 Module 7: OOA Voertuigen

In deze module wordt de maximale schade van de voertuigen bepaald. Daarvoor wordt het aantal voertuigen van een gemeente gelijk verdeeld over de oppervlakte bebouwing, industrie en infrastructuur waarna het aantal voertuigen vermenigvuldigd wordt met een eenheidsprijs.

Module 1: Land Use Polygons	Input Files	Output Files
Module 2: Land Use Lines	Community Number Number of Cars (Per Community)	Max. Damage (Cars)
Module 3: Land Use Points	Build-up Area (Class 1)	
Module 4: Land Use Combination	Build-up Area (Class 2) Industry (Class 1)	
Module 5: Damage Points	Industry (Class 2)	
Module 6: OOA Houses	Infrastructure	
Module 7: OOA Vehicles	Calculate Module	
		Open Save

Figuur 9 - Module 7: OOA Voertuigen

2.7.1 Input: Gemeentenummer

Beschrijving:

Dit is een raster waarin elke gemeente een uniek id heeft.

Basisdata:

• <installatiefolder>\BLP_2016_LATIS30_LATIS40\fusiegemeenten\Basisdata\Fusiegemeentegrenzen 2006.shp: shapefile met de gemeentegrenzen

Updatecyclus:

n.v.t. (tenzij er nieuwe gemeenten of aangepaste gemeentegrenzen komen).

Processing:

• Omzetten van de shapefile naar westelijk, oostelijk en midden raster (zie 2.6.2 voor de reden hiervoor).

Input voor module 7:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\fusiegemeenten\gemnr_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\fusiegemeenten\gemnr_west.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\fusiegemeenten\gemnr_midden.rst

2.7.2 Input: Voertuigen_aantal

Beschrijving:

Dit is een raster waarin per gemeente het aantal voertuigen is weergegeven.

<u>Basisdata:</u>

<installatiefolder>\BLP_2016_LATIS30_LATIS40\Aantvoer\Basisdata\Aantal voertuigen per NIS code.xlsx: excelformulier met het aantal voertuigen per gemeente. Deze gegevens zijn afkomstig van FOD Economie, KMO, Middenstand en Energie – Statistiek en economische informatie – Voertuigenpark 2015.

Updatecyclus:

Jaarlijks.

Processing:

- Stap 1: data uit excelformulier linken met 'Fusiegemeentegrenzen2006.shp'
- Stap 2: 'Fusiegemeentegrenzen2006.shp' omzetten naar westelijk, oostelijk en midden raster met als value 'aant_voer'

Input voor module 7:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Aantvoer\voert_oost_recl.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Aantvoer\voert_west_recl.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Aantvoer\Midden\voert_mid.rst

2.7.3 Input: Bebouwing I en II, Industrie I en II en Infrastructuur

Deze wordt gegenereerd in de module 'Bodemgebruik Combinatie' (zie 2.4).

2.7.4 Output: Maxvoertuigen

Beschrijving:

Output van module 7. Dit raster geeft de maximale schade van voertuigen weer, wat als input dient voor de schademodule.

Updatecyclus:

Wanneer er nieuwe basisdata is.

Processing:

• Uitrekenen van module 7 voor het westelijk, oostelijk en midden gedeelte.

Output:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\ooaveh\Versie 4.0\Maxvoert_oost_finaal.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\ooaveh\Versie 4.0\Maxvoert_west_finaal.rst

2.8 Extra basisrasters

Deze rasters worden enkel en alleen in ArcGIS berekend en zullen dus geen module hebben in LATIS

2.8.1 Landbouwstreek

Beschrijving:

Dit is een raster dat Vlaanderen verdeeld in 39 landbouwzones. De 39 landbouwzones zijn een doorsnede van de rivierbekkens en de officiële landbouwstreken (Deckers *et al.,* 2008). Elke landbouwzone heeft een unieke code.

<u>Basisdata:</u>

 <installatiefolder>\BLP_2016_LATIS30_LATIS40\lbstreek\Basisdata\landbouwstreken_v2.shp: shapefile met de verschillende landbouwzones (doorsnede van de rivierbekkens (Bron: Vlaamse Hydrografische Atlas) en landbouwstreken (Bron: Vlaamse Land Maatschappij)).

Processing:

Westelijk en oostelijk raster maken van de shapefile.

Updatecyclus:

Wanneer er een nieuwe indeling van de rivierbekkens of landbouwstreken zou zijn.

Output:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lbstreek\lbstr_v2_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\lbstreek\lbstr_v2_west.rst

2.8.2 Max_schade_industrie

Beschrijving:

Max_schade_industrie is een raster dat de maximale schade (per m²) van de industriële gebouwen weer geeft. De berekening van de maximale schade van de industriële gebouwen is gebaseerd op Reyns *et al.* (2008). Er worden 16 categorieën industriële gebouwen onderscheiden die elk een verschillende maximale schade hebben. De gebouwen die niet tot één van de 16 categorieën behoren, krijgen als waarde het gewogen gemiddelde (1880 euro/m²).

<u>Basisdata:</u>

 <installatiefolder>\BLP_2016_LATIS30_LATIS40\industrie\Basisdata\ind_geb_2015_v3.shp: shapefile met de industriële gebouwen (aanmaak zie 2.1.3)

Updatecyclus:

Wanneer er een nieuw GRB is of nieuwe industriële percelen beschikbaar zijn of de maximale schade herberekend kan worden.

Processing:

- Stap 1: ind_geb_2015_v3 (Lettercode) linken aan 'Gemiddelde verzekerdewaarde per lettercode.xlsx' (Lettercode). Deze data exporteren naar nieuwe shapefile: <installatiefolder>\BLP_2016_LATIS30_LATIS40\industrie\Basisdata\ind_geb_2015_v4.shp.
- Stap 2: ind_geb_2015_v4.shp omzetten naar een oostelijk en westelijk raster (value = afgeronde)

Output:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\industrie\maxind_oost.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\industrie\maxind_west.rst

2.8.3 Drempel_metro_parkeergarage

Beschrijving:

Dit is het raster dat de hoogte van de drempel voorstelt voor de schadeberekening aan parkeergarages. Deze drempel is ingesteld op 25 cm (Vanneuville *et al.*, 2009). Van dit raster zijn twee versies beschikbaar. De eerste versie van dit inputbestand geeft enkel aan de pixel parkeergarage zijn de waarde 25. De tweede versie van dit inputbestand geeft aan het volledige grid de waarde 25. Voor de schadeberekening komt dit toch op hetzelfde neer en het voordeel is dat wanneer er metro's of parkeergarages toegevoegd worden aan het bestand van de puntelementen, dit bestand niet moet gewijzigd worden.

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\Basisdata\pnt_pnt_2015.shp: shapefile met puntelementen die voorgesteld worden als punt

Updatecyclus:

Basisbestand moet enkel aangepast worden als de drempelwaarde gewijzigd zou worden (bijvoorbeeld 50 cm in plaats van 25 cm).

Processing:

- Stap 1: parkeergarages (code 281) selecteren uit pnt_pnt_2015.shp
- Stap 2: de geselecteerde punten omzetten naar een westelijk en oostelijk raster (value = 25) (dit is de eerste versie van het bestand)
- Stap 3: voor de tweede versie van het bestand worden het volledige westelijk en oostelijk raster via de reclass functie van Idrisi omgezet naar 25

Output:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\drempel_parking_oost_int.rst voor de eerste versie van het inputbestand.
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\drempel_parking_west_int.rst voor de eerste versie van het inputbestand.
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie 4.0\drempel_parking_oost_v2.rst voor de tweede versie van het inputbestand.
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\puntelementen\Versie
 4.0\drempel_parking_west_v2.rst voor de tweede versie van het inputbestand.

2.8.4 Waterwinning_dem

Beschrijving:

Dit raster bevat voor elke waterwinning de drempel waaronder de schade 0 en waarboven de schade maximaal is. Voor elke waterwinning zijn verschillende waarden teruggevonden. Dit raster werd voorlopig niet aangepast.

Basisdata:

• Deckers et al. (2009).

Updatecyclus:

Samen met waterwinning_max_schade.

Processing:

Het is onduidelijk hoe dit raster gemaakt werd.

Output:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\waterwinningen\v3_oost_drempel_ww.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\waterwinningen\v3_west_drempel_ww.rst

2.8.5 Popdens

Beschrijving:

Dit is een raster dat de bevolkingsdichtheid (aantal inwoners per m²) per statistische sector weergeeft. Hiervan zijn er reeds 3 stappen beschikbaar. In de eerste stap wordt het aantal inwoners in een statische sector gedeeld door de oppervlakte. In de tweede stap werden de wateroppervlakken geïntegreerd zodat de bevolkingsdichtheid op de plaats van water 0 werd. In een derde stap werd de data uit Bral *et al.* (2009) geïntegreerd. Deze data bevat een betere inschatting van de bevolkingsdichtheid op de zeewering.

Basisdata:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Aantbev\Basisdata\aantbev.shp: shapefile die het aantal inwoners per statistische sector bevat. De gegevens zijn afkomstig van FOD Economie, KMO, Middenstand en Energie Statistiek en economische informatie Census enquête 2011
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Waterlopen\Basisdata\wateroppervlakken.shp: shapefile van de wateroppervlakken
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Aantbev\Basisdata\bevolking_zeewering_achtergr ond0.rst: raster met de bevolkingsdichtheid op de zeewering. De rest van het raster heeft 0-waarden. (De methodologie om de bevolking op de zeewering te bepalen wordt beschreven in Bral et al. (2009). Deze werd hier niet geactualiseerd om willen van de beperkte tijd).

Updatecyclus:

Wanneer er nieuwe bevolkingsaantallen zijn of wanneer gelijkaardige gegevens beschikbaar zijn.

Processing:

- Stap 1: aan 'aantbev.shp' een extra veld 'inw_m2' toevoegen en vervolgens het aantal inwoners delen door de oppervlakte.
- Stap 2: 'aantbev.shp' omzetten naar een westelijk en een oostelijk raster (dit is de eerste stap)
- Stap 3: 'aantbev.shp' combineren (clip) met de 'wateroppervlakken.shp' tot 'aantbev_clip.shp'. Hierna krijgen alle wateroppervlakken waarde 0 voor het aantal inwoners. 'aantbev.shp' combineren (erase) met 'aantbev_clip.shp' tot 'aantbev_ersase.shp'.
- Stap 4: opnieuw het aantal inwoners delen door de oppervlakte (de oppervlakte van de statistische sectoren is immers gewijzigd, namelijk kleiner geworden) en die waarde onderbrengen in 'inw_m²
- Stap 5: 'aantbev_erase.shp' exporteren naar een westelijk en een oostelijk raster (dit is de tweede stap)
- Stap 6: voor de derde stap wordt er een overlay (Concat) gemaakt van 'bevolking_zeeweering_achtergrond0.rst' met het westelijk raster van de tweede stap. Voor het oostelijk raster verandert er niets

Output:

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Aantbev\bevd_oost_v1.rst voor de eerste stap.
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Aantbev\bevd_west_v1.rst voor de eerste stap.
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Aantbev\bevd_oost_v2.rst voor de tweede stap.
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Aantbev\bevd_west_v2.rst voor de tweede stap.
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Aantbev\bevd_west_v3_recl.rst voor de derde stap.

2.8.6 Evacuatie wegen

Beschrijving:

Dit raster bevat alle wegen en de wegen hebben een code gaan van 0 tot 3 volgens hun belangrijkheid. 0 verwijst naar een zeer belangrijke wegklasse, 3 verwijst naar een minder belangrijke wegklasse. Deze belangrijkheidsscore wordt in LATIS gekoppeld aan een evacuatiefactor.

Basisdata:

• <installatiefolder>\BLP_2016_LATIS30_LATIS40\Wegen\Basisdata\Wegen_wegenregister_2015_ev acuatie.shp

Updatecyclus:

Jaarlijks

Processing:

Elk type weg krijgt een belangrijkheidscore (Tabel 1).

Wegklasse	Belangrijkheidsscore	Evacuatiefactor
Autosnelweg	0	5
Weg met gescheiden rijbanen	1	3
Weg met 1 rijbaan	2	1
Rotonde	2	1
Speciale verkeerssituatie	2	1
Verkeersplein	2	1
Op en afrit behorende tot niet gelijkgrondse verbinding	2	1
Op en afrit behorende tot gelijkgrondse verbinding	2	1
Parallelweg	3	0
Ventweg	3	0
In –of uitrit parking	3	0
In –of uitrit dienst	3	0
Wandel en/of fietsweg	3	0
Tramweg	3	0
Dienstweg	3	0
Aardeweg	3	0

Wegen_wegenregister_2015_evacuatie.shp omzetten naar een oostelijk en westelijk raster (value = Belangrijk).

<u>Output:</u>

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Wegen\wegen_oost_eva.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Wegen\wegen_west_eva.rst

2.8.7 Maximale schadekaart

Beschrijving:

Voor de berekening van de additionele schade en schadeberekening op de zeewering is er ook een maximale economische schadekaart nodig. Deze schadekaart moet zowel berekend worden voor zoet als voor zout water. De maximale schadekaart wordt bepaald door een economische schadeberekening uit te voeren in LATIS (Damage and Risk Calculation -> Economic Damage) met een overstromingskaart waarbij de waterdiepte overal 501 cm bedraagt. Vanaf een waterdiepte van 5 meter is de schade voor elk element maximaal.

<u>Basisdata:</u>

- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Maximale_schade\Basisdata\ovk_oost_max_501.rst
- <installatiefolder>\BLP_2016_LATIS30_LATIS40\Maximale_schade\Basisdata\ovk_west_max_501.rst

Processing:

Uitvoeren economische schadeberekening in LATIS.

Output:

- BLP_2016_LATIS30_LATIS40\Maximale_schade\zoetoost_maxschadekaart.rst.
- BLP_2016_LATIS30_LATIS40\Maximale_schade\zoetwest_maxschadekaart.rst.
- BLP_2016_LATIS30_LATIS40\Maximale_schade\zoutoost_maxschadekaart.rst.
- BLP_2016_LATIS30_LATIS40\Maximale_schade\zoutwest_maxschadekaart.rst.

2.8.8 Culturele kwetsbaarheid

In Beullens et al. (2015) werd een methodologie ontwikkeld om de culturele impact van een overstroming te kwantificeren. De culturele impact is gelijk aan het product van een overstromingsindex en een culturele kwetsbaarheidsindex. Hieronder zal besproken worden op welke manier de culturele kwetsbaarheidsindex aangemaakt werd.

Als input bestand voor de culturele kwetsbaarheid index wordt er gebruikt gemaakt van de dibe_relicten shapefile, die het bouwkundig erfgoed bevat.

De inventaris van het bouwkundig erfgoed bevat meer dan 80.000 relicten. Bouwkundig erfgoed is zo ruim mogelijk gezien: gebouwen van alle mogelijke typologieën, gebouwengroepen, complexen, bijhorende interieurs en interieurelementen, infrastructuur, klein erfgoed, straatmeubilair, monumentale beeldhouwwerken enz.

Basisdata:

- <installatiefolder>\BLP\BLP_2016_LATIS30_LATIS40\Culturele_impact\Basisdata\dibe_relicten.shp: Shapefile (voor heel Vlaanderen)
- <installatiefolder>\BLP\BLP_2016_LATIS30_LATIS40\Culturele_impact\Basisdata\BouwkundigeRelic ten_ProvincieAntwerpen.xlsx

- <installatiefolder>\BLP\BLP_2016_LATIS30_LATIS40\Culturele_impact\Basisdata\BouwkundigeReli cten_ProvincieLimburg.xlsx
- <installatiefolder>\BLP\BLP_2016_LATIS30_LATIS40\Culturele_impact\Basisdata\BouwkundigeReli cten_ProvincieVlaamsBrabant.xlsx
- <installatiefolder>\BLP\BLP_2016_LATIS30_LATIS40\Culturele_impact\Basisdata\BouwkundigeReli cten_ProvincieOostVlaanderen.xlsx
- <installatiefolder>\BLP\BLP_2016_LATIS30_LATIS40\Culturele_impact\Basisdata\BouwkundigeReli cten_ProvincieWestVlaanderen.xlsx

Updatecyclus:

Telkens wanneer nieuwe relicten toegevoegd worden aan de database. Updates zijn er bijna dagelijks.

Processing:

De Excel files werden bekomen met behulp van REST (Representational State Tranfer) services. Zo kan er aan de hand van een python script, dat op volgende locatie staat:

<installatiefolder>\BLP\BLP_2016_LATIS30_LATIS40\Culturele_impact\Basisdata, relicten worden opgevraagd met bijhorende indicatoren.

De indicatoren worden vervolgens omgezet naar een schaal gaande van 1 tot 5 en gecombineerd tot een culturele kwetsbaarheidsindex ook gaande van 1 tot 5. Welke indicatoren gebruikt worden en hoe deze gecombineerd worden met elkaar, wordt beschreven in Beullens et al. (2015).

De shapefile van de relicten linken aan de Excel files met de relicten voor de provincies Antwerpen, Limburg, Oost-Vlaanderen, West-Vlaanderen en Vlaams Brabant op volgende locatie: <installatiefolder>\BLP\BLP_2016_LATIS30_LATIS40\Culturele_impact\Basisdata. De shapefile en de Excel files linken gebeurde op volgende manier: join RELICT_ID van shapefile met ID1 van Excel formulier.

Vervolgens de shapefile omzetten naar een raster (zie Bijlage 2 voor de omzetting van een shapefile naar rasterformaat). Deze bewerkingen moeten manueel uitgevoerd worden in ArcGIS en kunnen dus niet uitgevoerd worden in LATIS zelf.

Output: Culturele kwetsbaarheid

• <installatiefolder>\BLP_2016_LATIS30_LATIS40\Culturele_impact\Culturele_kwetsbaarheid.rst

2.8.9 Maximale culturele schadekaart

De maximale schadekaart wordt bepaald door een culturele schadeberekening uit te voeren in LATIS (Damage and Risk Calculation -> Cultural Damage) met een overstromingskaart waarbij de waterdiepte overal 501 cm bedraagt. Vanaf een waterdiepte van 5 meter is de schade voor elk element maximaal. Deze maximale schadekaart wordt gebruikt om per scenario de som te bepalen van de maximale culturele schade voor elk cultureel element. Deze som wordt getoond in het tabblad summary, zodat de waarde van de werkelijke culturele schade beter geïnterpreteerd kan worden

Basisdata:

• <installatiefolder>\BLP_2016_LATIS30_LATIS40\Maximale_schade\Basisdata\ovk_max_501.rst

Processing:

Uitvoeren culturele schadeberekening in LATIS.

Output:

• BLP_2016_LATIS30_LATIS40\Maximale_schade\Max_culturele_schadekaart.rst.

2.8.10 Sociale kwetsbaarheid

In Broidioi et al. (2015) werd een methodologie ontwikkeld om de sociale impact van een overstroming te kwantificeren. De sociale impact is gelijk aan het product van een overstromingsindex, een sociale kwetsbaarheidsindex en het aantal getroffen personen. Hieronder zal besproken worden op welke manier de sociale kwetsbaarheidsindex aangemaakt werd.

Voor het bepalen van de sociale kwetsbaarheidsindex wordt vertrokken van de shapefile voor de statistische sectoren.

<u>Basisdata:</u>

- <installatiefolder>\BLP\BLP_2016_LATIS30_LATIS40\Sociale_impact\Basisdata\Statsec_Vla.shp: Shapefile (voor heel Vlaanderen)
- <installatiefolder>\BLP\BLP_2016_LATIS30_LATIS40\Sociale_impact\Basisdata\Sociale_kwetsbaarh eidsindex.xlsx

Updatecyclus:

De statistische sectoren worden aangepast bij een nieuwe volkstelling (elke 10 jaar). Er zullen geen volkstellingen meer volgen, dus deze data kan behouden blijven. Wel zullen de indicatoren die gebruikt worden om de sociale kwetsbaarheid te bepalen op onregelmatige basis aangepast worden.

Processing:

De Excel files met de indicatoren werden opgevraagd bij verschillende instanties en vervolgens samengevoegd tot 1 Excel file (Sociale_kwetsbaarheidsindex.xlsx).

De indicatoren worden vervolgens omgezet naar percentages en gecombineerd tot een index volgens de methodologie van Broidioi et al. (2015).

De shapefile van de statistische sectoren linken aan de Excel file met de sociale kwetsbaarheid: join CODSEC van shapefile met NISSector van Excel formulier.

Vervolgens de shapefile omzetten naar een raster (zie Bijlage 2 voor de omzetting van een shapefile naar rasterformaat). Deze bewerkingen moeten manueel uitgevoerd worden in ArcGIS en kunnen dus niet uitgevoerd worden in LATIS zelf.

Output: Sociale kwetsbaarheid

• <installatiefolder>\BLP_2016_LATIS30_LATIS40\Sociale_impact\Sociale_kwetsbaarheid.rst

2.8.11 Maximale sociale schadekaart

De maximale schadekaart wordt bepaald door een sociale schadeberekening uit te voeren in LATIS (Damage and Risk Calculation -> Social Damage) met een overstromingskaart waarbij de waterdiepte overal 501 cm bedraagt. Vanaf een waterdiepte van 5 meter is de schade voor elk element maximaal. Deze maximale schadekaart wordt gebruikt om per scenario de som te bepalen van de maximale sociale schade voor elk gebouw. Deze som wordt getoond in het tabblad summary, zodat de waarde van de werkelijke sociale schade beter geïnterpreteerd kan worden

Basisdata:

<installatiefolder>\BLP_2016_LATIS30_LATIS40\Maximale_schade\Basisdata\ovk_max_501.rst

Processing:

Uitvoeren sociale schadeberekening in LATIS.

Output:

• BLP_2016_LATIS30_LATIS40\Maximale_schade\Max_sociale_schadekaart.rst.

2.8.12 Vegetatietype

In Beullens et al. (2017) werd een methodologie ontwikkeld om de ecologische impact van een overstroming te kwantificeren. De ecologische impact is gelijk aan het product van een ecologische waarde index en een overstromingskwetsbaarheidsindex. Hieronder zal besproken worden op welke manier het basis raster met de vegetatietypes werd opgemaakt dat nodig is voor de ecologische impact berekening.

Basisdata:

- <installatiefolder>\BLP\BLP_2016_LATIS30_LATIS40\Ecologische_impact\Basisdata\BwkHab_2016. shp
- <installatiefolder>\BLP\BLP_2016_LATIS30_LATIS40\Aantwon\Basisdata\BWK_omzetting.xlsx

Updatecyclus:

Telkens wanneer nieuwe BWK beschikbaar is. Updates van BWK komen er op onregelmatige basis.

Processing:

De shapefile BwkHab_2016.shp linken aan het Excel formulier BWK_omzetting.xlsx: join EENH1 van shapefile met BWK van Excel formulier.

De shapefile omzetten naar een raster op basis van het veld 'nr_typeMT' (zie Bijlage 2 voor de omzetting van een shapefile naar rasterformaat). Deze bewerkingen moeten manueel uitgevoerd worden en kunnen dus niet uitgevoerd worden in LATIS zelf.

Output: Vegetatietype

• <installatiefolder>\BLP_2016_LATIS30_LATIS40\Ecologische_impact\Vegetatietype.rst

2.8.13 Ecologische Waarde

Naast een raster met de vegetatietypes (zie 2.8.11), moet er ook een raster aangemaakt worden met de ecologische waarde voor de verschillende vegetatietypes om een ecologische impact berekening te kunnen uitvoeren. Hieronder zal besproken worden hoe zo een raster wordt aangemaakt.

Basisdata:

- <installatiefolder>\BLP\BLP_2016_LATIS30_LATIS40\Ecologische_impact\Basisdata\BwkHab_2016. shp
- <installatiefolder>\BLP\BLP_2016_LATIS30_LATIS40\Ecologische_impact\Basisdata\SBZ.shp
- <installatiefolder>\BLP\BLP_2016_LATIS30_LATIS40\Aantwon\Basisdata\BWK_omzetting.xlsx

Updatecyclus:

Telkens wanneer nieuwe BWK beschikbaar is. Updates van BWK komen er op onregelmatige basis.

Processing:

De shapefile BwkHab 2016.shp linken aan het Excel formulier BWK omzetting.xlsx: join EENH1 van shapefile **BWK** Excel formulier. met van De bekomen shapefile wordt geëxporteerd naar BWK_omzetting_vegetatietype_2016.shp. Vervolgens de BWK eenheden selecteren die gelegen zijn in de Speciale Beschermingszones. Dit kan door de shapefile BWK_omzetting_vegetatietype_2016.shp te clippen (functie Clip) met de shapefile SBZ.shp. De bekomen shapefile is BWK clip SBZ.shp. In de attributentabel van BWK_clip_SBZ.shp een veld toevoegen (short integer 'SBZ') en met de 'Field Calculator' alles de waarde 1 geven. De volgende stap is om de BWK_omzetting_vegetatietype_2016.shp te linken aan BWK_clip_SBZ.shp (join op basis van veld UIDN). Het resultaat wordt geëxporteerd naar BWK vegetatietype SBZ 2016.shp (hierin kunnen de dubbele velden uitgezet worden bij Properties -> Fields). Aan de shapefile BWK vegetatietype SBZ 2016.shp een veld toevoegen (short integer 'EW') en vervolgens onderstaand VB script gebruiken in de 'Field Calculator' (Show Codeblock aanvinken):

dim n If [SBZ] = 1 AND [GSEW_MT] = 10 then n = 50 Elseif [SBZ] = 1 AND [GSEW_MT] = 43 then n = 53 Else n = [GSEW_MT] End if

EW = n

Met dit script worden de vegetatie eenheden die gelegen zijn in een Speciale Beschermingszone en een ecologische waarde hebben die lager is dan 50, opgewaardeerd naar biologisch waardevol.

De shapefile omzetten naar een raster op basis van het veld 'EW' (zie Bijlage 2 voor de omzetting van een shapefile naar rasterformaat). Deze bewerkingen moeten manueel uitgevoerd worden en kunnen dus niet uitgevoerd worden in LATIS zelf.

Output: Vegetatietype

• <installatiefolder>\BLP_2016_LATIS30_LATIS40\Ecologische_impact\Ecologische_waarde.rst

2.8.14 Maximale ecologische schadekaart

De maximale schadekaart wordt bepaald door een ecologische schadeberekening uit te voeren in LATIS (Damage and Risk Calculation -> Ecological Damage) met een overstromingskaart waarbij de waterdiepte overal 501 cm bedraagt. Vanaf een waterdiepte van 5 meter is de schade voor elk element maximaal. Belangrijk hierbij is om een terugkeerperiode te kiezen die kleiner is dan 25 jaar en als periode zomer te nemen. Enkel op deze manier kan de maximale ecologische schade bepaald worden. Deze maximale schadekaart wordt gebruikt om per scenario de som te bepalen van de maximale ecologische schade voor elke vegetatie eenheid. Deze som wordt getoond in het tabblad summary, zodat de waarde van de werkelijke ecologische schade beter geïnterpreteerd kan worden

Basisdata:

• <installatiefolder>\BLP_2016_LATIS30_LATIS40\Maximale_schade\Basisdata\ovk_max_501.rst

Processing:

Uitvoeren ecologische schadeberekening in LATIS.

Output:

• BLP_2016_LATIS30_LATIS40\Maximale_schade\Max_ecologische_schadekaart.rst.

3 Besluit

De aanmaak van een nieuwe BLP bestaat uit verschillende stappen. 7 modules (Fout! Verwijzingsbron niet gevonden., Fout! Verwijzingsbron niet gevon

4 Referentielijst

Beullens, J.; Broidioi, S.; Verwaest, T.; De Sutter, R.; De Maeyer, P.; Mostaert, F. (2015). Ontwikkeling LATIS 4 – Methodologie: Deelrapport 2b: Methodologie voor het kwantificeren van de culturele impact van overstromingen. Versie 3.0. WL Rapporten, 13_159. Universiteit Gent/Antea Group/Waterbouwkundig Laboratorium: Antwerpen, België.

Beullens, J.; Broidioi, S.; Verwaest, T.; De Sutter, R.; De Maeyer, P.; Mostaert, F. (2016). WL2016R13_159_7_Ontwikkeling LATIS 4 Deelopdracht bis: Actualisatie basiskaarten en schadewaarden. Versie 1.0. WL Rapporten, 13_159. Universiteit Gent\Antea Group\Waterbouwkundig Laboratorium: Antwerpen, België.

Bral, L.; Kellens, W.; Verwaest, T.; Reyns, J.; Vanpoucke, Ph.; Mostaert, F. (2009). Veiligheid Vlaamse kust. Overstromingsrisico's aan de Vlaamse kust: deel 2. Addendum methodologie: verfijning van de slachtofferberekening op de zeedijk. Versie 2.0. *WL Rapporten*, 718_02a. Universiteit Gent/Waterbouwkundig Laboratorium: Antwerpen, Belgium. v, 23pp

Broidioi, S.; Boey, I.; Verwaest, T.; De Sutter, R.; De Maeyer, P.; Mostaert, F. (2015). Ontwikkeling LATIS 4 – Methodologie: Deelopdracht 1b: Methodologie voor het kwantificeren van de sociale impact van overstromingen. Versie 3.0. WL Rapporten, 13_159. Universiteit Gent/Antea Group/Waterbouwkundig Laboratorium: Antwerpen, België.

Deckers, P.; Vanneuville, W.; De Maeyer, Ph. (2008). Effect van bresgevoeligheid op het overstromingsrisico en verdere verbetering van de risicomethodologie, optimalisatie unieke relatie waterstand – schade (landbouw). "WL Adviezen", 779/05. Waterbouwkundig Laboratorium: Borgerhout, België & Universiteit Gent, België. 57p.

Deckers, P.; Holvoet, K.; Vanneuville, W.; De Maeyer, Ph.; Mostaert, F. (2009). LATIS 2.0: Softwaretool voor berekeningen van risico's en schade. Versie 2_0. WL Technische Nota's, 36. Waterbouwkundig Laboratorium & Universiteit Gent: Antwerpen, België.

Bijlage 1 : Vertaling BWK naar LATIS-klassen

EENH	LATIS_klas	Code	EENH	LATIS_klas	Code
abi	Bos	81	bs-	Akkerland	61
acer	Bos	81	bu	Akkerland	61
ad	Water	1	bu+	Akkerland	61
ad-	Water	1	bu-	Akkerland	61
ae	Water	1	car	Bos	81
ae+	Water	1	cas	Bos	81
ae-	Water	1	cd	Natuur	91
aer	Water	1	cdb	Natuur	91
aer+	Water	1	ce	Natuur	91
aer-	Water	1	ce-	Natuur	91
aes	Bos	81	ceb	Natuur	91
aev	Water	1	ceb-	Natuur	91
aev+	Water	1	ces	Natuur	91
aev-	Water	1	ces+	Natuur	91
ah	Water	1	ces-	Natuur	91
ah-	Water	1	cg	Natuur	91
alng	Bos	81	cg-	Natuur	91
alni	Bos	81	cgb	Natuur	91
ао	Water	1	cgb+	Natuur	91
ao+	Water	1	cgb-	Natuur	91
ao-	Water	1	cm	Natuur	91
aom	Water	1	cm-	Natuur	91
aom+	Water	1	cmb	Natuur	91
aom-	Water	1	cmb-	Natuur	91
aoo	Water	1	cor	Bos	81
aoo-	Water	1	ср	Natuur	91
ар	Water	1	cp-	Natuur	91
ap+	Water	1	cpb	Natuur	91
ар-	Water	1	cra	Bos	81
аро	Water	1	CV	Natuur	91
apo+	Water	1	cvb	Natuur	91
арр	Water	1	da	Natuur	91
app+	Water	1	da+	Natuur	91
арр-	Water	1	da-	Natuur	91
b	Akkerland	61	dd	Natuur	91
bet	Bos	81	dd+	Natuur	91
bk	Akkerland	61	dd-	Natuur	91
bk+	Akkerland	61	dl	Natuur	91
bl	Akkerland	61	dla	Natuur	91
bl+	Akkerland	61	dla+	Natuur	91
bl-	Akkerland	61	dls	Natuur	91
bs	Akkerland	61	dls+	Natuur	91
bs+	Akkerland	61	dm	Natuur	91

G:\731_01 GIS\gegevens-informatie\BWK 2014\ LktEenh_Latis.xlsx

EENH	LATIS_klas	Code	EENH	LATIS_klas	Code
dm-	Natuur	91	hft	Weiland	71
ds	Natuur	91	hft+	Weiland	71
ds-	Natuur	91	hft-	Weiland	71
dz	Natuur	91	hj	Weiland	71
endym	Bos	81	hj+	Weiland	71
fa	Bos	81	hj-	Weiland	71
fa-	Bos	81	hjb	Weiland	71
fag	Bos	81	hjb+	Weiland	71
fe	Bos	81	hjb-	Weiland	71
fe+	Bos	81	hk	Weiland	71
fe-	Bos	81	hk-	Weiland	71
fk-	Bos	81	hm	Weiland	71
fl	Bos	81	hm+	Weiland	71
fl-	Bos	81	hm-	Weiland	71
fm	Bos	81	hme	Weiland	71
fm-	Bos	81	hme-	Weiland	71
frax	Bos	81	hmm	Weiland	71
fs	Bos	81	hmm+	Weiland	71
fs+	Bos	81	hmm-	Weiland	71
fs-	Bos	81	hmo	Weiland	71
gml	Bos	81	hmo+	Weiland	71
gmn	Bos	81	hmo-	Weiland	71
h	Weiland	71	hn	Weiland	71
ha	Weiland	71	hn+	Weiland	71
ha+	Weiland	71	hn-	Weiland	71
ha-	Weiland	71	hnb	Weiland	71
hab	Weiland	71	hnb-	Weiland	71
hab+	Weiland	71	hp	Weiland	71
hab-	Weiland	71	hp+	Weiland	71
had	Weiland	71	hpr	Weiland	71
had-	Weiland	71	hpr+	Weiland	71
hc	Weiland	71	hpr-	Weiland	71
hc+	Weiland	71	hr	Weiland	71
hc-	Weiland	71	hr+	Weiland	71
hcb	Weiland	71	hr-	Weiland	71
hcb-	Weiland	71	hrb	Weiland	71
hd	Weiland	71	hrb+	Weiland	71
hd+	Weiland	71	hrb-	Weiland	71
hd-	Weiland	71	hu	Weiland	71
hf	Weiland	71	hu+	Weiland	71
hf+	Weiland	71	hu-	Weiland	71
hf-	Weiland	71	hub	Weiland	71
hfb	Weiland	71	hub+	Weiland	71
hfb+	Weiland	71	hub-	Weiland	71
hfb-	Weiland	71	hv	Weiland	71
hfc	Weiland	71	hx	Weiland	71
hfc+	Weiland	71	hz	Weiland	71
hfc-	Weiland	71	jug	Bos	81

EENH	LATIS_klas	Code	EENH	LATIS_klas	Code
jun	Bos	81	kbp+	Natuur	91
ka	Natuur	91	kbp-	Natuur	91
k(ae)	Natuur	91	kbpica	Natuur	91
k(ae+)	Natuur	91	kbpica-	Natuur	91
k(ae-)	Natuur	91	kbpinn	Natuur	91
k(ah)	Natuur	91	kbpinn-	Natuur	91
k(ao)	Natuur	91	kbpins	Natuur	91
k(ao+)	Natuur	91	kbpins-	Natuur	91
k(ao-)	Natuur	91	kbpl	Natuur	91
kb	Natuur	91	kbpl+	Natuur	91
kb+	Natuur	91	kbpl-	Natuur	91
kb-	Natuur	91	kbpr	Natuur	91
kba	Natuur	91	kbpr-	Natuur	91
kba+	Natuur	91	kbprua	Natuur	91
kba-	Natuur	91	kbprua+	Natuur	91
kbac	Natuur	91	kbprua-	Natuur	91
kbac+	Natuur	91	kbpt	Natuur	91
kbac-	Natuur	91	kbpt-	Natuur	91
kbae	Natuur	91	kbq	Natuur	91
kbae+	Natuur	91	kbq+	Natuur	91
kbae-	Natuur	91	kbq-	Natuur	91
kbb	Natuur	91	kbqr	Natuur	91
kbb+	Natuur	91	kbqr+	Natuur	91
kbb-	Natuur	91	kbqr-	Natuur	91
kbc	Natuur	91	kbr	Natuur	91
kbc+	Natuur	91	kbr+	Natuur	91
kbc-	Natuur	91	kbr-	Natuur	91
kbca	Natuur	91	kbs	Natuur	91
kbca+	Natuur	91	kbs+	Natuur	91
kbca-	Natuur	91	kbs-	Natuur	91
kbcr	Natuur	91	kbt	Natuur	91
kbcr+	Natuur	91	kbt+	Natuur	91
kbcr-	Natuur	91	kbt-	Natuur	91
kbf	Natuur	91	kbu	Natuur	91
kbf+	Natuur	91	kbu+	Natuur	91
kbf-	Natuur	91	kbu-	Natuur	91
kbfr	Natuur	91	le a	Ontginningen en	24
kbfr+	Natuur	91	KC	stortterreinen	34
kbfr-	Natuur	91	k(cd)	Natuur	91
kbgml	Natuur	91	k(ce)	Natuur	91
kbgml+	Natuur	91	k(ce-)	Natuur	91
kbgml-	Natuur	91	k(cg)	Natuur	91
kbgmn	Natuur	91	k(cg+)	Natuur	91
kbgmn-	Natuur	91	k(cg-)	Natuur	91
kbj	Natuur	91	k(cgb)	Natuur	91
kbj+	Natuur	91	k(cgb-)	Natuur	91
kbj-	Natuur	91	k(cm)	Natuur	91
kbp	Natuur	91	k(cm-)	Natuur	91

EENH	LATIS_klas	Code	EENH	LATIS_klas	Code
k(cp)	Natuur	91	kh(fa)	Natuur	91
k(cp-)	Natuur	91	kh(fa-)	Natuur	91
kd	Natuur	91	k(hfc)	Natuur	91
kd-	Natuur	91	k(hfc-)	Natuur	91
k(da)	Natuur	91	kh(fe)	Natuur	91
k(da-)	Natuur	91	kh(fl)	Natuur	91
kf	Natuur	91	kh(fm)	Natuur	91
kg	Natuur	91	khfr	Natuur	91
kh	Natuur	91	khfr+	Natuur	91
kh+	Natuur	91	khfr-	Natuur	91
kh-	Natuur	91	kh(fs)	Natuur	91
k(ha)	Natuur	91	k(hft)	Natuur	91
k(ha+)	Natuur	91	k(hft-)	Natuur	91
k(ha-)	Natuur	91	khgml	Natuur	91
kha	Natuur	91	khgml+	Natuur	91
kha+	Natuur	91	khgml-	Natuur	91
kha-	Natuur	91	khgmn	Natuur	91
khac	Natuur	91	khgmn-	Natuur	91
khac+	Natuur	91	k(hj)	Natuur	91
khac-	Natuur	91	k(hj-)	Natuur	91
k(had)	Natuur	91	khlig	Natuur	91
k(had-)	Natuur	91	khlig-	Natuur	91
khae	Natuur	91	k(hm)	Natuur	91
khb	Natuur	91	k(hm+)	Natuur	91
khb+	Natuur	91	k(hm-)	Natuur	91
khb-	Natuur	91	k(hn)	Natuur	91
k(hc)	Natuur	91	k(hn-)	Natuur	91
k(hc+)	Natuur	91	k(hp+)	Natuur	91
k(hc-)	Natuur	91	khp	Natuur	91
khc	Natuur	91	khp+	Natuur	91
khc-	Natuur	91	khp-	Natuur	91
khca	Natuur	91	khpins	Natuur	91
khca+	Natuur	91	khpr	Natuur	91
khca-	Natuur	91	khpr-	Natuur	91
khco	Natuur	91	khprua	Natuur	91
khco+	Natuur	91	khprua-	Natuur	91
khco-	Natuur	91	khpt	Natuur	91
khcr	Natuur	91	khpt-	Natuur	91
khcr+	Natuur	91	khq	Natuur	91
khcr-	Natuur	91	khq+	Natuur	91
k(hd)	Natuur	91	khq-	Natuur	91
k(hd+)	Natuur	91	kh(qa)	Natuur	91
k(hd-)	Natuur	91	kh(qa-)	Natuur	91
k(hf)	Natuur	91	kh(qb)	Natuur	91
k(hf+)	Natuur	91	kh(qb+)	Natuur	91
k(hf-)	Natuur	91	kh(qb-)	Natuur	91
khf	Natuur	91	kh(qe)	Natuur	91
khf-	Natuur	91	khqr	Natuur	91

EENH	LATIS_klas	Code	EENH	LATIS_klas	Code
khqr+	Natuur	91	khw-	Natuur	91
khqr-	Natuur	91	khwa	Natuur	91
kh(qs)	Natuur	91	khwac	Natuur	91
kh(qs+)	Natuur	91	khwb	Natuur	91
kh(qs-)	Natuur	91	khwb-	Natuur	91
k(hr)	Natuur	91	khwca	Natuur	91
k(hr+)	Natuur	91	khwco	Natuur	91
k(hr-)	Natuur	91	khwf	Natuur	91
khr	Natuur	91	khwfr	Natuur	91
khr+	Natuur	91	khwgml	Natuur	91
khr-	Natuur	91	khwgmn	Natuur	91
khs	Natuur	91	khwp	Natuur	91
khs+	Natuur	91	khwpt	Natuur	91
khs-	Natuur	91	khwq	Natuur	91
khsa	Natuur	91	khwq+	Natuur	91
khsa-	Natuur	91	khwq-	Natuur	91
kh(sf)	Natuur	91	khwqr	Natuur	91
kh(sf+)	Natuur	91	khwqr-	Natuur	91
kh(sf-)	Natuur	91	khwr	Natuur	91
kh(sg)	Natuur	91	khwr+	Natuur	91
kh(sg-)	Natuur	91	khws	Natuur	91
kh(sk)	Natuur	91	khwu	Natuur	91
kh(sk-)	Natuur	91	ki	Vliegveld	41
kh(sp)	Natuur	91	kj	Natuur	91
kh(sp+)	Natuur	91	kj+	Natuur	91
kh(sp-)	Natuur	91	kj-	Natuur	91
kh(sz)	Natuur	91	kk	Natuur	91
kh(sz+)	Natuur	91	k(ku)	Natuur	91
kh(sz-)	Natuur	91	k(ku+)	Natuur	91
k(hu)	Natuur	91	k(ku-)	Natuur	91
k(hu+)	Natuur	91	kl	Natuur	91
k(hu-)	Natuur	91	km	Natuur	91
khu	Natuur	91	km+	Natuur	91
khu+	Natuur	91	km-	Natuur	91
khu-	Natuur	91	k(mc)	Natuur	91
kh(va)	Natuur	91	k(mc+)	Natuur	91
kh(va+)	Natuur	91	k(mc-)	Natuur	91
kh(va-)	Natuur	91	k(mr)	Natuur	91
kh(vc)	Natuur	91	k(mr+)	Natuur	91
kh(vc-)	Natuur	91	k(mr-)	Natuur	91
kh(vf)	Natuur	91	k(mrb)	Natuur	91
kh(vf-)	Natuur	91	k(mru)	Natuur	91
kh(vm)	Natuur	91	k(mru-)	Natuur	91
kh(vm-)	Natuur	91	k(ms)	Natuur	91
kh(vn)	Natuur	91	k(ms-)	Natuur	91
kh(vn-)	Natuur	91	k(mz)	Natuur	91
khw	Natuur	91	k(mz-)	Natuur	91
khw+	Natuur	91	kn	Natuur	91

EENH	LATIS_klas	Code	EENH	LATIS_klas	Code
kn+	Natuur	91	kt(mr-)	Natuur	91
kn-	Natuur	91	kt(qa)	Natuur	91
ko	Ontginningen en	24	kt(qa+)	Natuur	91
ко	stortterreinen	54	kt(qa-)	Natuur	91
kp	Natuur	91	kt(qb)	Natuur	91
kp+	Natuur	91	kt(qb-)	Natuur	91
kp-	Natuur	91	kt(qe)	Natuur	91
kpa	Natuur	91	kt(ql)	Natuur	91
kpk	Natuur	91	kt(qs)	Natuur	91
kpk+	Natuur	91	kt(qs-)	Natuur	91
kpk-	Natuur	91	kt(ru)	Natuur	91
kq	Natuur	91	kt(ru-)	Natuur	91
kr	Natuur	91	kt(sg)	Natuur	91
ks	Natuur	91	kt(sg-)	Natuur	91
kt	Natuur	91	kt(sgb)	Natuur	91
kt+	Natuur	91	kt(sgb+)	Natuur	91
kt-	Natuur	91	kt(sgu-)	Natuur	91
kt(ce)	Natuur	91	kt(sk-)	Natuur	91
kt(cg)	Natuur	91	kt(sp)	Natuur	91
kt(cg-)	Natuur	91	kt(sp+)	Natuur	91
kt(cm)	Natuur	91	kt(sp-)	Natuur	91
kt(cp)	Natuur	91	kt(sz)	Natuur	91
kt(cp-)	Natuur	91	kt(sz+)	Natuur	91
kt(da)	Natuur	91	kt(sz-)	Natuur	91
kt(fm-)	Natuur	91	kt(va)	Natuur	91
kt(fs)	Natuur	91	kt(va-)	Natuur	91
kt(ha)	Natuur	91	ku	Natuur	91
kt(ha+)	Natuur	91	ku+	Natuur	91
kt(ha-)	Natuur	91	ku-	Natuur	91
kt(hd)	Natuur	91	kub	Natuur	91
kt(hd-)	Natuur	91	kub+	Natuur	91
kt(hf)	Natuur	91	kub-	Natuur	91
kt(hf-)	Natuur	91	kw	Natuur	91
kt(hk)	Natuur	91	kw+	Natuur	91
kt(hk-)	Natuur	91	kw-	Natuur	91
kt(hm)	Natuur	91	kz	Natuur	91
kt(hn-)	Natuur	91	I	Bos	81
kt(hp+)	Natuur	91	lar	Bos	81
kt(hr)	Natuur	91	lh	Bos	81
kt(hr+)	Natuur	91	lh+	Bos	81
kt(hr-)	Natuur	91	lhb	Bos	81
kt(hu)	Natuur	91	lhb+	Bos	81
kt(hu+)	Natuur	91	lhi	Bos	81
kt(hu-)	Natuur	91	lhi+	Bos	81
kt(ku)	Natuur	91	lig	Bos	81
kt(ku+)	Natuur	91	ls	Bos	81
kt(ku-)	Natuur	91	ls+	Bos	81
kt(mr)	Natuur	91	lsb	Bos	81

EENH	LATIS_klas	Code	EENH	LATIS_klas	Code
lsb+	Bos	81	pmb-	Bos	81
lsh	Bos	81	pmh	Bos	81
lsi	Bos	81	pmh+	Bos	81
lsi+	Bos	81	pms	Bos	81
mc	Natuur	91	рор	Bos	81
mc+	Natuur	91	potr	Bos	81
mc-	Natuur	91	рр	Bos	81
mcb	Natuur	91	рра	Bos	81
mcb-	Natuur	91	ррі	Bos	81
md	Natuur	91	ppm	Bos	81
md+	Natuur	91	ppmb	Bos	81
md-	Natuur	91	ppmb-	Bos	81
mk	Natuur	91	ppmh	Bos	81
mk+	Natuur	91	ppms	Bos	81
mk-	Natuur	91	ppms-	Bos	81
mm	Natuur	91	prua	Bos	81
mm-	Natuur	91	prus	Bos	81
mp	Natuur	91	pse	Bos	81
mp-	Natuur	91	q	Bos	81
mr	Natuur	91	qa	Bos	81
mr+	Natuur	91	qa+	Bos	81
mr-	Natuur	91	qa-	Bos	81
mrb	Natuur	91	qb	Bos	81
mrb+	Natuur	91	qb+	Bos	81
mrb-	Natuur	91	qb-	Bos	81
mru	Natuur	91	qe	Bos	81
mru-	Natuur	91	qe+	Bos	81
ms	Natuur	91	qe-	Bos	81
ms+	Natuur	91	qk	Bos	81
ms-	Natuur	91	qk-	Bos	81
mz	Natuur	91	ql	Bos	81
mz-	Natuur	91	ql-	Bos	81
n	Bos	81	qs	Bos	81
n+	Bos	81	qs+	Bos	81
n-	Bos	81	qs-	Bos	81
ng	Bos	81	que	Bos	81
р	Bos	81	quep	Bos	81
ра	Bos	81	quer	Bos	81
ра-	Bos	81	rob	Bos	81
рі	Bos	81	ru	Bos	81
pica	Bos	81	ru-	Bos	81
pics	Bos	81	rud	Bos	81
pinn	Bos	81	rud+	Bos	81
pins	Bos	81	rud-	Bos	81
pint	Bos	81	S	Natuur	91
plat	Bos	81	sal	Bos	81
pm	Bos	81	sam	Natuur	91
pmb	Bos	81	sd	Natuur	91

EENH	LATIS_klas	Code	EENH	LATIS_klas	Code
sd+	Natuur	91	uv	Recreatie	50
sd-	Natuur	91	uv-	Recreatie	50
se	Natuur	91	v	Bos	81
se+	Natuur	91	va	Bos	81
se-	Natuur	91	va+	Bos	81
sf	Natuur	91	va-	Bos	81
sf+	Natuur	91	VC	Bos	81
sf-	Natuur	91	VC+	Bos	81
sg	Natuur	91	VC-	Bos	81
sg+	Natuur	91	vf	Bos	81
sg-	Natuur	91	vf+	Bos	81
sgb	Natuur	91	vf-	Bos	81
sgb+	Natuur	91	vm	Bos	81
sgb-	Natuur	91	vm+	Bos	81
sgu	Natuur	91	vm-	Bos	81
sgu+	Natuur	91	vn	Bos	81
sgu-	Natuur	91	vn+	Bos	81
sk	Natuur	91	vn-	Bos	81
sk-	Natuur	91	vo	Bos	81
sm	Natuur	91	vo+	Bos	81
sm+	Natuur	91	VO-	Bos	81
sm-	Natuur	91	vt	Bos	81
SO	Natuur	91	vt-	Bos	81
SO-	Natuur	91	wat	Water	1
sp	Natuur	91	weg	Overige infrastructuur	33
sp+	Natuur	91	zee	Water	1
sp-	Natuur	91	fran	Bos	81
spoor	Overige infrastructuur	33	hdb	Weiland	71
SZ	Natuur	91	hdb-	Weiland	71
sz+	Natuur	91	hmb-	Weiland	71
SZ-	Natuur	91	k(aom)	Natuur	91
t	Natuur	91	k(aom-)	Natuur	91
tax	Bos	81	k(aom+)	Natuur	91
til	Bos	81	k(cdb)	Natuur	91
tsu	Bos	81	k(cmb)	Natuur	91
u	Bebouwd gebied	12	k(cpb)	Natuur	91
ua	Bebouwd gebied	12	k(hab)	Natuur	91
ua-	Bebouwd gebied	12	k(hab-)	Natuur	91
uc	Recreatie	50	k(hab+)	Natuur	91
ud	Bebouwd gebied	12	k(hfb)	Natuur	91
ui	Industrieel gebied	22	k(hfb-)	Natuur	91
ui-	Industrieel gebied	22	k(hjb)	Natuur	91
ulm	Bos	81	k(hrb)	Natuur	91
un	Bebouwd gebied	12	k(kub)	Natuur	91
un-	Bebouwd gebied	12	k(mcb)	Natuur	91
ur	Bebouwd gebied	12	kbco	Natuur	91
ur+	Bebouwd gebied	12	kbco-	Natuur	91
ur-	Bebouwd gebied	12	kblar	Natuur	91

EENH	LATIS_klas	Code	EENH	LATIS_klas	Code
kblar-	Natuur	91	cpb+	Natuur	91
kbpse	Natuur	91	cpb-	Natuur	91
kf-	Natuur	91	ct	Natuur	91
kh(ql)	Natuur	91	ct+	Natuur	91
kh(ql-)	Natuur	91	ct-	Natuur	91
khfran	Natuur	91	ctm	Natuur	91
khfran-	Natuur	91	ctm+	Natuur	91
kt(cdb)	Natuur	91	ctm-	Natuur	91
kt(cgb)	Natuur	91	cv+	Natuur	91
kt(cpb)	Natuur	91	CV-	Natuur	91
kt(hab)	Natuur	91	cvb+	Natuur	91
kt(hab-)	Natuur	91	cvb-	Natuur	91
kt(hrb)	Natuur	91	d	Natuur	91
kt(kub)	Natuur	91	dl+	Natuur	91
kt(mrb)	Natuur	91	dl-	Natuur	91
msb	Natuur	91	dla-	Natuur	91
msb-	Natuur	91	dls-	Natuur	91
msb+	Natuur	91	dm+	Natuur	91
sdb	Natuur	91	ds+	Natuur	91
sdb-	Natuur	91	duits	Natuur	91
sdb+	Natuur	91	dz+	Natuur	91
pinm	Bos	81	dz-	Natuur	91
а	Water	1	ek	Bos	81
ad+	Water	1	ek+	Bos	81
ah+	Water	1	ek-	Bos	81
am	Water	1	es	Bos	81
aoo+	Water	1	es+	Bos	81
аро-	Water	1	es-	Bos	81
b-	Akkerland	61	f	Bos	81
bc	Akkerland	61	fa+	Bos	81
bc+	Akkerland	61	fk	Bos	81
bc-	Akkerland	61	fk+	Bos	81
bg	Akkerland	61	fl+	Bos	81
bg+	Akkerland	61	fm+	Bos	81
bg-	Akkerland	61	had+	Weiland	71
bk-	Akkerland	61	hcb+	Weiland	71
bux	Bos	81	hk+	Weiland	71
с	Natuur	91	hkb	Weiland	71
cd+	Natuur	91	hkb+	Weiland	71
cd-	Natuur	91	hkb-	Weiland	71
cdb+	Natuur	91	hme+	Weiland	71
cdb-	Natuur	91	hnb+	Weiland	71
ce+	Natuur	91	hp-	Weiland	71
ceb+	Natuur	91	hpu	Weiland	71
cg+	Natuur	91	hpu+	Weiland	71
cm+	Natuur	91	hpu-	Weiland	71
cmb+	Natuur	91	hv+	Weiland	71
cp+	Natuur	91	hv-	Weiland	71

EENH	LATIS_klas	Code	EENH	LATIS_klas	Code
hx+	Weiland	71	k(hn+)	Natuur	91
hx-	Weiland	71	khpins+	Natuur	91
hz+	Weiland	71	khpins-	Natuur	91
hz-	Weiland	71	khpr+	Natuur	91
k	Natuur	91	khprua+	Natuur	91
ka+	Natuur	91	khpt+	Natuur	91
ka-	Natuur	91	kh(qa+)	Natuur	91
k(ah+)	Natuur	91	kh(qe+)	Natuur	91
k(ah-)	Natuur	91	kh(qe-)	Natuur	91
kbgmn+	Natuur	91	kh(qk)	Natuur	91
kbpica+	Natuur	91	kh(qk+)	Natuur	91
kbpinn+	Natuur	91	kh(qk-)	Natuur	91
kbpins+	Natuur	91	khsa+	Natuur	91
kbpr+	Natuur	91	kh(sg+)	Natuur	91
kbpt+	Natuur	91	kh(sk+)	Natuur	91
k(cd+)	Natuur	91	kh(vc+)	Natuur	91
k(cd-)	Natuur	91	kh(vf+)	Natuur	91
k(ce+)	Natuur	91	kh(vm+)	Natuur	91
k(cgb+)	Natuur	91	kh(vn+)	Natuur	91
k(cm+)	Natuur	91	khwa+	Natuur	91
k(cp+)	Natuur	91	khwa-	Natuur	91
kd+	Natuur	91	khwac+	Natuur	91
k(da+)	Natuur	91	khwac-	Natuur	91
k(had+)	Natuur	91	khwb+	Natuur	91
khae+	Natuur	91	khwca+	Natuur	91
khae-	Natuur	91	khwca-	Natuur	91
khc+	Natuur	91	khwco+	Natuur	91
khf+	Natuur	91	khwco-	Natuur	91
kh(fa+)	Natuur	91	khwcr	Natuur	91
k(hfc+)	Natuur	91	khwcr+	Natuur	91
kh(fe+)	Natuur	91	khwcr-	Natuur	91
kh(fe-)	Natuur	91	khwf+	Natuur	91
kh(fk)	Natuur	91	khwf-	Natuur	91
kh(fk+)	Natuur	91	khwfr+	Natuur	91
kh(fk-)	Natuur	91	khwfr-	Natuur	91
kh(fl+)	Natuur	91	khwp+	Natuur	91
kh(fl-)	Natuur	91	khwp-	Natuur	91
kh(fm+)	Natuur	91	khwpt+	Natuur	91
kh(fm-)	Natuur	91	khwpt-	Natuur	91
kh(fs+)	Natuur	91	khwqr+	Natuur	91
kh(fs-)	Natuur	91	khwr-	Natuur	91
k(hft+)	Natuur	91	khws+	Natuur	91
khgmn+	Natuur	91	khws-	Natuur	91
k(hj+)	Natuur	91	khwu+	Natuur	91
k(hk)	Natuur	91	khwu-	Natuur	91
k(hk+)	Natuur	91	k(mrb+)	Natuur	91
k(hk-)	Natuur	91	k(mrb-)	Natuur	91
khlig+	Natuur	91	k(mru+)	Natuur	91

EENH	LATIS_klas	Code	EENH	LATIS_klas	Code
k(ms+)	Natuur	91	kt(ms-)	Natuur	91
k(mz+)	Natuur	91	kt(mz)	Natuur	91
kt(cd)	Natuur	91	kt(mz+)	Natuur	91
kt(cd+)	Natuur	91	kt(mz-)	Natuur	91
kt(cd-)	Natuur	91	kt(qb+)	Natuur	91
kt(ce+)	Natuur	91	kt(qe+)	Natuur	91
kt(ce-)	Natuur	91	kt(qe-)	Natuur	91
kt(cg+)	Natuur	91	kt(qk)	Natuur	91
kt(cm+)	Natuur	91	kt(qk+)	Natuur	91
kt(cm-)	Natuur	91	kt(qk-)	Natuur	91
kt(cp+)	Natuur	91	kt(ql+)	Natuur	91
kt(da+)	Natuur	91	kt(ql-)	Natuur	91
kt(da-)	Natuur	91	kt(qs+)	Natuur	91
kt(fa)	Natuur	91	kt(ru+)	Natuur	91
kt(fa+)	Natuur	91	kt(sf)	Natuur	91
kt(fa-)	Natuur	91	kt(sf+)	Natuur	91
kt(fe)	Natuur	91	kt(sf-)	Natuur	91
kt(fe+)	Natuur	91	kt(sg+)	Natuur	91
kt(fe-)	Natuur	91	kt(sgb-)	Natuur	91
kt(fk)	Natuur	91	kt(sgu)	Natuur	91
kt(fk+)	Natuur	91	kt(sgu+)	Natuur	91
kt(fk-)	Natuur	91	kt(sk)	Natuur	91
kt(fl)	Natuur	91	kt(sk+)	Natuur	91
kt(fl+)	Natuur	91	kt(va+)	Natuur	91
kt(fl-)	Natuur	91	kt(vm)	Natuur	91
kt(fm)	Natuur	91	kt(vm+)	Natuur	91
kt(fm+)	Natuur	91	kt(vm-)	Natuur	91
kt(fs+)	Natuur	91	kt(vn)	Natuur	91
kt(fs-)	Natuur	91	kt(vn+)	Natuur	91
kt(hc)	Natuur	91	kt(vn-)	Natuur	91
kt(hc+)	Natuur	91	kx	Natuur	91
kt(hc-)	Natuur	91	lhb-	Bos	81
kt(hd+)	Natuur	91	lhi-	Bos	81
kt(hf+)	Natuur	91	lsb-	Bos	81
kt(hj)	Natuur	91	lsh+	Bos	81
kt(hj+)	Natuur	91	lsh-	Bos	81
kt(hj-)	Natuur	91	lsi-	Bos	81
kt(hk+)	Natuur	91	m	Natuur	91
kt(hm+)	Natuur	91	mcb+	Natuur	91
kt(hm-)	Natuur	91	mm+	Natuur	91
kt(hn)	Natuur	91	mp+	Natuur	91
kt(hn+)	Natuur	91	mru+	Natuur	91
kt(mc)	Natuur	91	mz+	Natuur	91
kt(mc+)	Natuur	91	pa+	Bos	81
kt(mc-)	Natuur	91	pi+	Bos	81
kt(mr+)	Natuur	91	pi-	Bos	81
kt(ms)	Natuur	91	pmb+	Bos	81
kt(ms+)	Natuur	91	pmh-	Bos	81

EENH	LATIS_klas	Code	EENH	LATIS_klas	Code
pms+	Bos	81	k(mcb-)	Natuur	91
pms-	Bos	81	k(mcb+)	Natuur	91
ppa+	Bos	81	kbco+	Natuur	91
ppa-	Bos	81	kblar+	Natuur	91
ppi+	Bos	81	kbpse-	Natuur	91
ppi-	Bos	81	kbpse+	Natuur	91
ppmb+	Bos	81	kh(ql+)	Natuur	91
ppmh+	Bos	81	khfran+	Natuur	91
ppmh-	Bos	81	khlar	Natuur	91
ppms+	Bos	81	khlar-	Natuur	91
qd	Bos	81	khlar+	Natuur	91
qd+	Bos	81	kt(cdb-)	Natuur	91
qd-	Bos	81	kt(cdb+)	Natuur	91
qk+	Bos	81	kt(cgb-)	Natuur	91
ql+	Bos	81	kt(cgb+)	Natuur	91
qx	Bos	81	kt(cmb)	Natuur	91
qx+	Bos	81	kt(cmb-)	Natuur	91
qx-	Bos	81	kt(cmb+)	Natuur	91
ru+	Bos	81	kt(cpb-)	Natuur	91
sk+	Natuur	91	kt(cpb+)	Natuur	91
so+	Natuur	91	kt(hab+)	Natuur	91
tm	Natuur	91	kt(hfb)	Natuur	91
tm+	Natuur	91	kt(hfb-)	Natuur	91
tm-	Natuur	91	kt(hfb+)	Natuur	91
uv+	Recreatie	50	kt(hjb)	Natuur	91
vt+	Bos	81	kt(hjb-)	Natuur	91
hdb+	Weiland	71	kt(hjb+)	Natuur	91
hmb	Weiland	71	kt(hrb-)	Natuur	91
hmb+	Weiland	71	kt(hrb+)	Natuur	91
k(cdb-)	Natuur	91	kt(kub-)	Natuur	91
k(cdb+)	Natuur	91	kt(kub+)	Natuur	91
k(cmb-)	Natuur	91	kt(mcb)	Natuur	91
k(cmb+)	Natuur	91	kt(mcb-)	Natuur	91
k(cpb-)	Natuur	91	kt(mcb+)	Natuur	91
k(cpb+)	Natuur	91	kt(mrb-)	Natuur	91
k(hfb+)	Natuur	91	kt(mrb+)	Natuur	91
k(hjb-)	Natuur	91	t+	Natuur	91
k(hjb+)	Natuur	91	k(hp)	Natuur	91
k(hrb-)	Natuur	91	rhod	Bos	81
k(hrb+)	Natuur	91			
k(kub-)	Natuur	91			
k(kub+)	Natuur	91			

Bijlage 2 : Omzetten van een shapefile naar een westelijk en een oostelijk raster

Stap 1: Omzetten van shapefile naar grid.

Hiervoor wordt ArcGIS (ArcMap) gebruikt. Via de ArcToolbox wordt naar 'Conversion Tools > To Raster' gegaan. Daar kan gekozen worden voor 'Polygon to Raster', 'Polyline to Raster' of 'Point to Raster' naargelang het type shapefile.

Polygon to Raster		
Input Features	*	Cellsize (optional)
L:\BLP_2015\fusiegemeenten\Basisdata\Fusiegemeentegrenzen2006.shp		
Value field		The cell size for the output raster dataset.
gemnr	-	The default call size is the chartest of the width as beinht of the
1 Output Raster Dataset		extent of the input feature dataset in the output spatial reference
L:\BLP_2015\fusiegemeenten\gemnr_west.rst		divided by 250.
Cell assignment type (optional)		
CELL_CENTER	•	
Priority field (optional) NONE		
Cellsize (optional)		
5		
	OK Cancel Environments << Hide Help	Tool Help

Vervolgens wordt de shapefile gekozen en wordt het geschikte attribuut (value field) gekozen. Als cellsize wordt altijd 5 gekozen. Vervolgens kan via 'Environments' de ruimtelijke extent van het nieuwe grid vastgelegd worden. Daarvoor moet gebruik gemaakt worden van een bestaand westelijk of oostelijk grid zodat alle grids uiteindelijk dezelfde oppervlakte hebben. Na deze stap is er een westelijk en oostelijk grid baschikbaar van de shapefile.

Stap 2: Omzetten van het grid naar ascii-formaat

Via de ArcToolbox wordt naar 'Conversion Tools > From Raster' gegaan. Daar kan gekozen worden voor 'Raster to Ascii'. Via deze tool wordt het westelijk en oostelijk grid omgezet naar een ascii-bestand.

Stap 3: Omzetten van ascii-bestanden naar Idrisi raster-formaat

Dit kan zowel in Idrisi (File > Import > Software-Specific Formats > Esri Formats > ARCRASTER) als in LATIS (Tools > Import/Export > Convert AcrView Ascii ti Idrisi Raster) gedaan worden. Voordeel van LATIS is dat meerdere ascii's in batch omgezet kunnen worden.

DEPARTEMENT **MOBILITEIT & OPENBARE WERKEN** Waterbouwkundig Laboratorium

Berchemlei 115, 2140 Antwerpen T +32 (0)3 224 60 35 F +32 (0)3 224 60 36 waterbouwkundiglabo@vlaanderen.be www.waterbouwkundiglaboratorium.be