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On the numerical resolution of hydraulic jumps:
Algorithms, Boundary Conditions, and Turbulence Models

Abstract

This reports deals with the verification and validation of a newly proposed modification to the k‐𝜔 SST model
and optimized Volume‐of‐Fluid (VoF) algorithm for the simulation of stable hydraulic jumps in engineering set‐
tings. The proposedmodifications suggest alternatives to the Scale‐Adaptive‐Simulation (SAS) concept in order
to tackle some perceived deficiencies in the original formulation of Menter and Egorov, 2010, for two‐phase
incompressible flows incurring in sheared flows. Additional modifications to the proposed turbulence model
are suggested in order to reduce spurious generation of turbulence across the interface and close to walls.
Results show overall agreement with literature studies regarding the study of hydraulic jumps in sloped chan‐
nels, including numerical and physical experiments. Furthermore, implicit‐explicit Flux‐Corrected Transport
methods are implemented in order to allow the use of dual time‐step discretizations.
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1 Introduction

An experimentalist is he whom his results everybody believes, except for himself,
and a “numericalist” is he whom his results nobody believes, except for himself.

– William Eichinger

Computational Fluid Dynamics (CFD) is the de facto tool for the study of transonic reactive flows, thermal
hydraulics in nuclear facilities, and in ship hydrodynamics, both in academic and industrial settings, just to
name a few use cases. More recently, the area of applicability has expanded to eco‐hydraulics, and hydraulic
engineering in general. One common feature in the types of flows just described is the inherent difficulty in
their study via experiments, mostly due to the limitations present in scalemodelling andmeasurements. These
limitations are not exclusive to such fields: hydraulic engineering practice relies heavily on scale modelling,
despite its shortcomings when measuring bubbly flows and similarity arguments.

Previous experimental studies conducted by the Author (López Castaño et al., 2021) have elucidated the chal‐
lenges in measuring flow patterns within a hydraulic jump’s roller with an acceptable accuracy. Phenomena
such as aeration and bubble dynamics (coalescense, break‐up, entrainment, de‐gassing) present in the hy‐
draulic jumpmake it difficult tomeasure the structure of turbulence and general flow accurately using classical
PIV techniques. An accuratemeasurement of such type of flows using opticalmethods require phase‐detection
probes that synchronize the camera with the bubbly phase. Such complexities make CFD attractive whenever
details on the structure of hydraulic jumps are needed.

Thus, in an effort to complement the tools that currently Flanders Hydraulics (FH) uses for the study of flow
phenomena in hydraulic structure set‐ups (e. g. : locks, fish passages, weirs, dike overflow), validation and
verification studies using CFD software are being conducted. A first study performed by De Schrijver, 2021
explored the features of hydraulic jumps after slopes using CFD; it was found, amongst other things, that the
results were quite sensitive to the choice of turbulencemodel and solver settings, even when using sufficiently
refined grids.

Given the aforementioned challenges, This work focuses on the extension, development, and validation of a
novel turbulence model suitable for the study of flows typical in hydraulic engineering under the RAS philo‐
sophy. Additionally, modifications on the traditional VoF and Pressure‐Implicit with Splittiong‐Operator (PISO)
algorithms are proposed in order to accelerate the convergence of the solution. Here a round of validations
will be performed following the configuration and type of flows studied by De Schrijver, 2021. Namely, the
present work emphasizes on the validation of flows involving hydraulic jumps which, typically, are amongst
the most ubiquitous features in hydraulic engineering design.

A word of caution: this work will make often use of the words “steep” and “mild” slopes when referring to the
vertical gradient of the sloped channel. These words may have different meanings in the context of hydraulic
engineering, depending on the topic being studied. Here, the focus is on Rapidly varied flows, as opposed to
Gradually varied flows, more precisely local features regarding hydraulic jumps in sloped channels hence the
terms “slope”, “mild”, and “steep” refer to orographic features rather than hydraulic ones. So, when the text
mentions a hydraulic jump occurring after a mild slope it should be understood as a hydraulic jump occurring
after a channel with a slope 𝜃 = 5∘ or less1, and not a hydraulic jump happening after an M1/M2 type chan‐
nel flow (which would be impossible in any case). To be clear, all sloped channels in the present study are
hydraulically steep.

1Notice this threshold is defined according to the criterium cos 𝜃 → 1 as 𝜃 → 0.
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1.1 Why a hydraulic jump?

With the aforementionedprecept inmind, a single archetypeflow representativeof the flowsoftenencountered
in eco‐hydraulics will be chosen on which this work will be based. This archetype should permit the study of
the following aspects:

1. Rapidly‐varying open‐channel flows: accurate resolution of the free‐surface is important.

2. Unsteady‐ness: the classical tools of hydraulics are not able to accurately represent unsteady behaviour
in transient and non‐transient flows.

3. Turbulence: The classical treatment of turbulence in hydraulics (as a force, or stress) is just ignored for
rapidly‐varied flows. However, internal mechanisms of dissipation may be present which, in principle,
can be conveniently expressed in terms of forces. Mathematical descriptions obtained for such kinds of
flows are based on potential‐flow theory which, in some cases, offer insufficient information regarding
the internal forces needed for the design of, say, fish passages.

Based on the aforementioned list, it is clear that the archetype flow needed for the analysis should be the
hydraulic jump. Hydraulic jumps, or standing waves in general, are ubiquitous in hydraulic engineering practice
and are flow features used by practitioners often to their advantage during design. Given the unsteady and
turbulent character of hydraulic jumps, and the difficulties in representing and measuring such flows at scale,
it becomes an ideal candidate for this study.

1.2 Objectives

This report will conduct numerical experiments of interest in hydraulic engineering and eco‐hydraulics practice
with the intent to:

1. Optimize existing algorithms for the study of high‐Reynolds number two‐phase flows.

2. Propose and implement a novel turbulence model for the solution of the Reynolds‐Averaged Navier‐
Stokes (RANS) equations.

3. Validate the code implemented against different types of hydraulic jumps using available data and cur‐
rent theory.

4. Propose future research lines based on the experience gained in the present study.

The present report will perform a validation and verification study of some methodologies proposed for the
accurate simulation of flows of interest in hydraulics using RAS. This implies that the present validation will not
attempt to determine, given the richness of data coming from the present study, whether all aspects of the
flow (such as turbulence budget, vorticity dynamics, bulking, etc) are either accurately resolved or modelled.
The validation will solely focus on the validation of ensemble‐average fields and features, and not on higher‐
order moments nor focus on the physics of mixing and turbulence. It is expected then that the user of the
present algorithm understands the limitations of RAS and pseudo‐time stepping for the study of inherently
unsteady flows, in particular hydraulic jumps, and interpret the results accordingly.

1.3 The use of OpenFOAM

The Author has developed during the years on various CFD codes, mostly Free‐ and OpenSource Software
(FOSS), and during his tenure in FH most of his numerics‐related work has been conducted using Field Opera‐
tion AndManipulation library (FOAM), which has at least three known forks. Starting from the assumption that
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the underlying libraries are correct, that is, that it follows the principles of correctness, reproducibility, abstrac‐
tion, and stability needed in any parallel code, details on the programming aspects of the codes implemented
by the Author will not be given. Code fragments of FOAM may be shown, depending on the context.

The point here is that the use of OpenFOAM, foam‐extend, or any other CFD tool or version or fork for that
matter, should be considered incidental to the discussion being held here and should bear no implication
whatsoever in the conclusions derived from this work.
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2 Mathematical Model

Natura non faciat saltus, nec ab extremo ad extremum transeat nisi per medium.

– John Ray

This chapter describes the governing equations for two‐phase incompressible flows using the VoF technique.
Additional details will be given regarding the turbulence models and algorithmic aspects intended for making
simulations more robust and reliable in the context of hydraulic engineering. A short discussion on boundary
conditions will be given as well.

The reader must assume that the derivations herein presented will be linearized within the formalism of the
Finite‐Volume Method (FVM) which is the technique of choice in many CFD libraries, including FOAM.

2.1 Governing Equations of flow

The governing RANS equations of two‐phase fluid flow in the context of VoF may be written in the following
manner, in indicial notation:

𝜕𝜌𝑢𝑖
𝜕𝑡 + 𝜕𝑢𝑗 𝑢𝑖

𝜕𝑥𝑗
= 𝜕𝑝𝑑

𝜕𝑥𝑖
+ 𝜕

𝜕𝑥𝑘
(𝜇 𝜕𝑢𝑖

𝜕𝑥𝑘
) − 𝑔𝑖𝑥𝑖

𝜕𝜌
𝜕𝑥𝑖

+ 𝜕𝑢𝑖
𝜕𝑥𝑘

𝜕𝜇
𝜕𝑥𝑘

− 𝜕𝜏 res
𝑖𝑗

𝜕𝑥𝑗
, (1)

𝜕𝛼
𝜕𝑡 + 𝜕𝑢𝑗𝛼

𝜕𝑥𝑗
+ 𝜕�̂�𝑗𝛼(1 − 𝛼)

𝜕𝑥𝑗
= 0, (2)

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0, (3)

𝑝𝑑 = 𝑝 − 𝜌𝑔𝑖𝑥𝑖, (4)
𝜌 = 𝛼𝜌𝐻2𝑂 + (1 − 𝛼)𝜌𝑎𝑖𝑟, (5)

𝜇 = 𝛼𝜇𝐻2𝑂 + (1 − 𝛼)𝜇𝑎𝑖𝑟 (6)

where �⃗� = 𝑢𝑖 are the cartesian velocities, ⃗𝑔 = 𝑔𝑖 gravity, 𝛼 the color (indicator, or so‐called volume fraction)
function, (⋅) a temporal filter, and ̂�⃗� = �̂�𝑖 the interface compression velocity. Pressure‐velocity coupling is
achieved using PISO. The compression velocity will be described in terms of the local Courant number (𝐶𝑜), in
the following manner:

�̂�𝑖 = 1
2

𝑛Γ
𝑖 |Δ𝑖|
δ𝑡 , (7)

where it is assumed that the ratio between numerical and interface fluxes (𝐶𝑜) must always remain below or
equal to 0.5, and where �⃗�Γ = 𝑛Γ

𝑖 is the surface normal to the air‐water interface Γ, Δ⃗ = Δ𝑖 is the distance
between two neighbouring centroids that share a face, and δ𝑡 the time step. This approach differs from the
original approach in Ubbink and Issa, 1999, for reasons that will be made apparent in later sections.

2.2 RAS turbulence model

This work is focused mainly on large scale processes and simulations of engineering interest in the field of
hydraulics, and those particular to hydraulic jumps. In that sense, RAS models will be used throughout this
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work, hence the Boussinesq hypothesis for the treatment of the residual fluxes of momentum is used, that is,

𝜏 res
𝑖𝑗 = 𝑢𝑖 𝑢𝑗 − 𝑢𝑖𝑢𝑗 = 2𝜇res𝑆𝑖𝑗 − 𝑘𝛿𝑖𝑗,

where

𝑆𝑖𝑗 = 1
2 (𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜕𝑢𝑗

𝜕𝑥𝑖
) .

The rest of this section will focus on ways of modelling the residual viscosity 𝜇𝑟𝑒𝑠, and for the remaining of this
work it is assumed that all velocity fields are time‐filtered.

2.2.1 The k‐omega SST‐SAS model

Based on the archetype flow of study (i.e. the hydraulic jump) chosen for the present work, the standard k‐𝜔
SST‐SAS closure model (Menter and Egorov, 2005; Menter, 1992) is augmented with a buoyancy production
term in the turbulence kinetic energy, or 𝑘, equation; while stabilized closure terms for the specific dissipa‐
tion, or 𝜔, equation are used following recent developments for the study of non‐linear waves in incompress‐
ible two‐phase flows (Devolder et al., 2017; Larsen and Fuhrman, 2018; Umlauf et al., 2003). The governing
equations are the following:

𝜕𝜌𝑘
𝜕𝑡 + 𝜕𝜌𝑢𝑗𝑘

𝜕𝑥𝑗
= 𝜌𝑃𝑘 − 𝜌𝑃𝑏 − 𝜌𝛽∗𝑘𝜔 + 𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜌𝜎∗ 𝑘

𝜔) 𝜕𝑘
𝜕𝑥𝑗

] , (8)

𝜕𝜌𝜔
𝜕𝑡 + 𝑢𝑗

𝜕𝜌𝜔
𝜕𝑥𝑗

= 𝜌𝑃𝜔 − 𝜌𝛽𝜔2 + 𝜌𝜎𝑑
𝜔

𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

+ 𝜕
𝜕𝑥𝑗

[(𝜇 + 𝜌𝜎 𝑘
𝜔) 𝜕𝜔

𝜕𝑥𝑗
] + 𝑄SAS. (9)

The residual viscosity may be then calculated as follows:

𝜇res = 𝜌𝜈res = 𝜌 𝑘
�̃� ,

where the ̃(⋅) over the specific dissipation term means a form of stabilization, or correction, and 𝜈res is the
kinematic residual viscosity. The constants (𝛼, 𝛼∗

𝑏, 𝛽, 𝛽∗, 𝜎, 𝜎∗, 𝜎𝑏) are defined elsewhere. The turbulence
kinetic energy production term is defined as follows:

𝑃𝑘 = 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= 2𝜈𝑡𝑆𝑖𝑗𝑆𝑖𝑗,

and the production of specific dissipation is proportional to 𝑃𝑘:

𝑃𝜔 = 𝛼 𝑘
𝜔

�̃�
̃�̃�
𝑃𝑘.

where ̃̃(⋅) means another form of wall‐model stabilization. Additionally, the production of turbulence kinetic
energy due to buoyancy is expressed as follows:

𝑃𝑏 = 𝑔𝑖
𝜌 𝜌′𝑢′

𝑖 = 𝜈𝑡𝛼∗
𝑏
𝑔𝑖
𝜌

𝜕𝜌
𝜕𝑥𝑖

.

Finally, the last term on the rhs of Equation 9, 𝑄SAS, resolves the smallest (dissipative) scales in the turbulence
spectrum, represented by the mesh. In other words this term accounts for the smallest, dissipative, and un‐
steady features of the flow, hence the importance of this term for the study of CHJ and hydraulic jumps in
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𝑈∞

𝑈𝑚

𝑦𝛿

ℎ

𝛼 = 1

𝛼 = 0.5

𝑈

Figure 1 – Sketch of the mean longitudinal flow inside a CHJ. The dotted line represents the shear region between the surface roller
and the wall jet. Here, 𝑈 is velocity and 𝛼 void fraction.

general without resorting to LES. The SAS model of Menter and Egorov, 2010 proposes the following:

𝑄SAS = max{𝜌𝜉2𝑆𝑖𝑗𝑆𝑖𝑗 ( 𝐿
𝐿𝑣𝑘

) − 𝐶SAS
2𝜌𝑘
𝜎Φ

max[ 1
𝑘2 ( 𝜕𝑘

𝜕𝑥𝑗
)

2
, 1
𝜔2 ( 𝜕𝜔

𝜕𝑥𝑗
)

2
] , 0} , (10)

𝐿 = 𝑘1/2

𝜔𝑐1/4
𝜇

, (11)

𝐿𝑣𝑘 = 𝜅𝑆𝑖𝑗/∣𝜕
2𝑢𝑘

𝜕𝑥2
𝑘

∣. (12)

The standard SAS model may under‐predict TKE production for regions with low velocity laplacians but finite
vorticity stretching, as will be shown in the following section.

2.2.2 Towards a better definition of the von Karman length 𝐿𝑣𝑘

In order to perform a stability analysis on the steady‐state solution of Equations 8 and 9, the mean vertical
velocity profile proposed by McCorquodale and Khalifa, 1983 and shown in Figure 1, is used:

𝑈 = 𝑈𝑚 (𝑦
𝛿 )

1/7
, 0 < 𝑦 < 𝛿 (13)

𝑈 = 𝑈∞ + (𝑈𝑚 − 𝑈∞)𝑒−4𝑐( 𝑦−𝛿
ℎ−𝛿 )2

, 𝑦 > 𝛿 (14)

where 𝑈𝑚, 𝑈∞, 𝑐, 𝑦, ℎ, and 𝛿 are the maximum velocity, velocity at the free‐surface, a constant (≈ 0.7), the
vertical coordinate, water depth, and boundary‐layer thickness, respectively. If one assumes 𝛿 << ℎ, that is,
when the Reynolds number of the incoming flow is very high (Re ⟶ ∞), then one can reduce Equations 13
and 14 to:

𝑈∗ = 𝑒−4𝑐𝑦∗ (15)

for the entire depth. The non‐dimensional velocity 𝑈∗ and depth 𝑦∗ are defined as:

𝑈∗ = 𝑈 − 𝑈∞
𝑈𝑚 − 𝑈∞

𝑦∗ = 𝑦
ℎ

One can easily prove that the von Karman length, 𝐿𝑣𝑘, is singular for the steady‐state velocity profile proposed
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earlier:

𝐿𝑣𝑘 = 𝜅 ∣𝜕𝑈∗
𝜕𝑦∗

/𝜕2𝑈∗
𝜕𝑦2∗

∣ , (16)

= 𝜅 ∣ 𝑦∗
1 − 8𝑐𝑦2∗

∣ ⟶ ∞,

as:

𝑦∗ ⟶ √ 1
8𝑐 ,

making 𝑄SAS ⟶ 0 within the roller region, despite it being a region of vorticity production. In other words, as
one reaches a steady‐state solution themodel will under‐predict dissipationwithin the roller (see Equation 10).

On the other hand, the current definition of 𝐿𝑘 may lead to inconsistent treatment of the production terms
present in the turbulence model. More specifically, by averaging in time Equations 8 and 9 in the outer region
of the flow, one obtains the following simplification:

0 = 𝜌𝑃𝑘 − 𝜌𝑃𝑏 − 𝜌𝛽∗𝑘𝜔,
0 = 𝜌𝑃𝜔 − 𝜌𝛽𝜔2 + 𝑄SAS.

Notice that the production of turbulence kinetic energy and buoyancy is always positive, making 𝑃𝑏 a destruc‐
tion term for k. For the specific dissipation on the other hand, production of 𝜔 is mediated by 𝑄SAS and 𝑃𝜔,
which are also positive.

In cases where 𝑄SAS = 0 due to very large velocity laplacians (𝐿𝑣𝑘 ⟶ ∞) one finds that the resulting time‐
integrated turbulence model equations become inconsistent for the jet flow that forms beneath the roller, as
shown:

0 = 𝑃𝑘 − 𝛽∗𝑘𝜔,

0 = 𝑃𝜔 − 𝛽𝜔2 = 𝛼𝑃𝑘
𝜈𝑡

− 𝛽𝜔2,

from where different expressions for 𝑃𝑘 can be obtained, making the model inconsistent. This calls for a re‐
definition of the von Karman length scale, which represents better the time‐scales associated with vorticity
production and dissipation, and guarantees consistency in the turbulence model for hydraulic jumps. A simple
alternative is one based on vorticity itself, that is:

𝐿𝑣𝑘 = 𝜅 |Ω𝑖𝑗|
√𝜕Ω𝑖𝑗

𝜕𝑥𝑘

𝜕Ω𝑖𝑗
𝜕𝑥𝑘

, (17)

where Ω𝑖𝑗 is the skew‐symmetric part of the velocity gradient. This is a more natural definition for 𝐿𝑣𝑘 com‐
pared to the original formulation shown in Equation 16, given the fact that the roller region will always have
finite and continuous vorticity profile (Hornung et al., 1995) in the mean.

Notice that in two dimensions Equation 17 reduces to Equation 16, if one uses the self‐similar velocity profile
proposed in Equation 14. As a consequence, one may conclude that the use of either equation is indifferent
for this particular problem. However, this simplification is misleading for two reasons:

1. Themaximumvertical‐velocity𝑉𝑚 decays at a rate proportional to𝑥−3/2 following that of the streamwise‐
velocity 𝑈 ′

𝑚 ∝ 𝑥−1/2 by virtue of mass conservation (Rajaratnam and Subramanya, 1968), thus giving
finite vortex‐stretching in the direction transversal to the flow. Additionally, by virtue of the dynamic
condition at the interface between fluids, the shear stress acting on a curved free surface contributes to
the vertical derivatives of vertical velocity, thus making 𝑢2 = 𝑓(𝑥1, 𝑥2). In 2DV, the transversal direction
is not modelled by definition.
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2. Flows with null‐valued laplacians are not devoid of vortices, even in two dimensions. Furthermore, a
vorticity‐production mechanism via surface‐reconnection at the toe of the hydraulic jump guarantees
non‐decaying vorticity in the roller and shear regions in the hydraulic jump (Hornung et al., 1995). In our
case, it is obvious that the flow on the roller and shear region has non‐zero mean vorticity, hence 𝑄SAS
must contribute to the production of k, even in 2D.

2.3 Algorithmic aspects

The modifications implemented in the k‐𝜔 SST‐SAS turbulence model make the solution more accurate and at
the same time more robust, for the following reasons:

1. Classical k‐𝜔 models with buoyancy correction produce excessive specific dissipation at the air‐water in‐
terface, even for potential or laminar waves. The inclusion of stabilization terms suggested by Larsen
and Fuhrman, 2018 mitigate such over‐dissipation, reducing the spurious currents product of over‐
dissipation.

2. The suggested compression velocity is guaranteed, by definition, not to produce fluxes that will be dom‐
inant for the calculation of the Courant number. This is particularly important when simulations are
being conducted using local‐time stepping.

However, robustness and stability may be improved by realizing the following two assumptions: (1) although
flows in hydraulic engineering are bi‐phasic, the interest rests on the liquid part of the simulation, and (2) the
time scales of interest are invariably inertial.

The first assumption can be tackled by defining a range for 𝛼 for which there is no interest; in other words, a
region of pure air. In the present study, one can define such region as 𝛼air ∈ [0, 0.1]. A common practice is to
clip the velocity to ⃗0 and set the pressure to hydrostaticwithin the aforementioned range, but that will produce
excessive velocity gradients in cells that undergo changes in 𝛼 that span the range from fully dry to fully wet.
In those regions, instead, it is preferred to limit the convection of momentum. Like that, one guarantees that
the stability in the pure air phase is still given by the diffusive operator (maximum Courant will remain on the
water phase) while letting momentum to be diffused only. The modifications to Equation 1 are simple:

𝜕𝜌𝑢𝑖
𝜕𝑡 + Η(𝛼 − 0.1)𝜕𝜌𝑢𝑗𝑢𝑖

𝜕𝑥𝑗
= (⋯), (18)

where Η is the Heaviside function. This forces the momentum transport and mixing processes to be purely
diffusive in the air phase, compared to the original RANS equations.

To tackle the second assumption runningwith high Courant numbers (𝒞𝑜 >> 1) is an imperative. As it currently
stands, the solution of the color function transport equation 2 present in FOAM follows either semi‐implicit
approach based on MULES (Deshpande et al., 2012), whereby the convective term is treated explicitly using
a Flux Corrected Transport (FCT), or a fully explicit geometric VoF reconstruction, scheme. Such schemes are
upwinded in nature, thus restricting the application of the MULES model to low Courant Numbers. One may
solve equation 2 implicitly instead, and linearize the convection term there using MHRIC schemes (Park et al.,
2009).

2.3.1 Linearization practices in fvSchemes

The linearization of all mathematical operators are described in Listings 2.1. Details on these operators can be
found elsewhere.

Listing 2.1 – The fvSchemes used in this work.
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ddtSchemes
{

default CoEuler phi rho 0.5;
}
gradSchemes
{

default cellLimited leastSquares 1.0;
}
divSchemes
{

div(rho*phi,U) Gauss vanLeer;//LUST grad(U);
div(rho*phi,k) Gauss limitedLinear 1.0;
div(rho*phi,omega) Gauss limitedLinear 1.0;
div(phi,alpha) Gauss MHRIC 0.5;
div(phirb,alpha) Gauss interfaceCompression;

}
laplacianSchemes
{

default Gauss linear corrected;
laplacian(rUAf,pd) Gauss linear corrected;

}
interpolationSchemes
{

default linear;
interpolate(grad(U)) linear;

}
snGradSchemes
{

default corrected;
}

Notice that for the time operator the local time stepping linearization was not used. This linearization is com‐
monly used within the context of MULES in OpenFOAM.

The Author has found this scheme to produce toomuchmass‐conservation errors due to the spurious smooth‐
ing of 𝛼, as shown in Listings 2.2. This form of local‐time stepping does not guarantee propagation of local
properties according to the local Courant number. For this reason, CoEuler scheme is preferred.

Listing 2.2 – Local‐time stepping.

//- in setRDeltaT.H
// (...)

rDeltaT.ref() = max
(

1/dimensionedScalar("maxDeltaT", dimTime, maxDeltaT),
fvc::surfaceSum(mag(phi))()()

/((2*maxCo)*mesh.V())
);
// (...)
// this function ensures that neighbouring values
// do not vary more than
// (1 - rDeltaTSmoothingCoeff) of the 'owner' value
if (rDeltaTSmoothingCoeff < 1.0)
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{
fvc::smooth(rDeltaT, rDeltaTSmoothingCoeff);

}
//- in fvcSmooth.C

// Propagate information over whole domain
FaceCellWave <smoothData , smoothData::trackData > smoothData
(

mesh,
changedFaces ,
changedFacesInfo ,
faceData ,
cellData ,
mesh.globalData().nTotalCells(), // max iterations
td

);

2.4 Boundary conditions and stability

One of the topics that seems to confuse newcomers to CFD for eco‐hydraulics is boundary conditions. Here,
a short explanation will be given for the choice of boundary conditions for themomentum equation 1 and for
the color function 2 in the context of open‐channel flows.

If the flow is non‐transient, that is, the local derivative of mass in the whole domain of integration at all times
remains zero, one can perfectly use combinations of Dirichlet and Neumann boundary conditions for the mo‐
mentum and color equations, respectively, even in the case where the water level at a certain downstream
boundary is not presumed.

One common approach for CFD practitioners, even researchers (Macián‐Pérez et al., 2020), in this kind of
situations is to define so‐called open boundary conditions at the outlet of their models, even if one may know
exactly howmuch discharge should go through this outlet. This may not be themost effective way to approach
such scenarios, in terms of stability, where the total mass balance involves a number of phases: any mass
error in one phase, well, must be compensated by the other phases2. An “open” boundary must enforce mass
conservation according to the projection step (which involves a user‐defined pressure at this boundary) in the
PISO algorithm, and what that step does is to lump all phase‐fluxes into one single phase‐averaged flux for
which the correction is done thus distributing any mass defect or error through all phases, including the water
phase. For the Dirichlet boundary condition, error is directly reflected on the water depth but not on the
pressure residual.

Setting a Dirichlet outlet is simple: if one knows the thewater height and the velocity (discharge) at a particular
outlet of the domain3 one just needs to impose a Dirichlet condition for the velocity equal to themean velocity
of the flow at the outlet4 and leave the rest of the fields (pressure, color function) with natural boundaries.

Using a Dirichlet instead of an “open” boundary condition works because the relation between water height
and velocity in open‐channel flows is known a‐priori (verified by color transport equation numerically), thus it
doesn’t need to be calculated at each iteration (via projection step). Given that solving the Poisson Equation
for pressure tends to be more expensive and produces stiffer residual matrices compared to the solution of
advection‐diffusion equations, it is expected that guaranteeing mass conservation via pressure may lead to

2Mass errors in VoF simulations come in two forms: (1) time‐scale, and (2) length‐scale, related. The maximum Courant (< 1) limit
for upwinded mass transport is a well known metric used for explaining mass‐related errors.

3a good practitioner should conduct a simple 1D study prior to a full fledged CFD, anyway
4strictly speaking, you have to set the velocities in the air phase to zero, although this is not necessary
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stability issues.

Figure 2 – Cumulative mass error for two types of boundary conditions at the outlet of an open‐channel flow.

More specifically, the stability of either type of boundary condition for an outlet can be readily assessed for a
2‐D classical hydraulic jump simulation5. The initial cumulative mass conservation error, that is, the volume‐
integrated mass fluxes accumulated over time at the beginning of each outer (time) iteration, is shown in
Figure 2. Notice there that the growth in mass conservation error is lower for the case where an “open”
boundary condition is set for the outlet. However, for this relatively simple case the cumulative mass error is
not too high in either case.

Finally, it can be concluded that for the purposes of the present work using either boundary conditions is
relatively unimportant, from a stability point of view. However, it is important to remark that even for simple
2‐D scenarios with high‐quality grids and no pseudo‐time stepping stability issues arise for “open” boundary
conditions.

5Details on the settings are incidental to the discussion.
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3 Verification and Validation: Hydraulic jump

With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.

– John von Neumann (1948)

The previous chapters should form the foundation of what comes next: a set of numerical experiments geared
towards the verification and validation of the postulates and algorithms previously discussed. Here, a quant‐
itative and qualitative validation of the results obtained will be conducted using a grid refinement study on
surrogate cases.

Figure 3 – Types of hydraulic jumps in sloped channel transitions as theorized by Ohtsu and Yasuda, 1991. Notice that the A‐type
jump corresponds to a CHJ.

Most importantly, this validation and the present report in general, concerns the study of hydraulic jumps in
the stable regime and occurring on slope transitions (see Figure 3).
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3.1 Previous grid‐refinement studies: challenges and misconceptions

In general it is important to understand that one can only prove heuristically whether a flow is amenable for
RAS: a feedback cycle between steady and unsteady features due to the large amalgam of scales provided by
the Navier‐Stokes equations makes it impossible to know, a‐priori, whether RAS is suitable. In other words,
possible stiffness in the solution6 produced by so‐called oscillations may sometimes be attributed to resolved
unsteady features rather than to dispersive errors produced by the operators used therein.

One may, naïvely, assume that a grid refinement study is sufficient to reduce the uncertainties due to grid
quality and linearization, and such would be true if it were not for the inherent unsteadiness present in hy‐
draulic jumps. In the context of RAS it is difficult to discern between spurious and physical oscillations, that is,
whether the lack of convergence in the solution’s system residuals may be due to oscillations that correspond
to resolved scales on the flow. Clearly, as one refines the grid the oscillations become more apparent and
part of the “unsteady behaviour” (i.e. TKE, dissipation) that was once being modelled by the turbulencemodel
becomes now resolved by the grid, but not accounted back by themodel itself, producing instabilities. The tur‐
bulence model suggested herein attempts to account for these oscillations coming from disparate time‐scales,
at least partially.

Table 1 – Grid convergence history for different RAS models used in the study of so‐called classical hydraulic jumps. For details on the
study refer to Bayón et al., 2019.

Δ𝑥 𝑝 GCI
(mm) ‐ %

STD. k‐𝜖 5.0 1.5 5.9
RNG. k‐𝜔 5.0 2.7 11.6
k‐𝜔 SST 5.0 2.1 4.5

In fact, some validation studies (Bayón et al., 2019) related to RAS show rather disparate convergence history
patterns for different turbulence models, as reproduced in Table 1. What’s interesting in the aforementioned
table is the order of convergence, 𝑝, which shows greater values than the theoretical maximum of 2 for PISO‐
based solvers in FOAM7 for the k‐𝜔 models. This disparity may confirm the hypothesis of the authors regarding
the superiority of the STD k‐𝜖 model, if one disregards the presence of unsteady, yet physical, space‐time
fluctuations present in hydraulic jumps. Onemay argue, however, that the supposed goodness exhibited by the
STD k‐𝜖modelmay be due to its over‐dissipative features suppressing the physical oscillations being resolved by
PISO. It iswell known that the STDk‐𝜖model tends to beover‐dissipative in regionswith strong adverse pressure
gradients, and under‐predict specific dissipation in regions where the flow present strong curvature (like in
rollers). In any case, the authors fail to examine why such disparity occurs and what leads them to believe the
STD k‐𝜖 model is the preferred choice, beyond the simplistic reasoning based on monotonic8 convergence of
the solution towards values somewhat in agreement with literature formulae.

Given the aforementioned challenges, it becomes then difficult to assess whether the standard RAS turbulence
models tested by Bayón et al., 2019 are stable for VoF flows in general, or whether these are just unstable for
the hydraulic jumps in questions. Thus, a grid convergence study will be devised in two steps: One where the
stability of the proposed algorithms can be proven for flows that exhibit features present in hydraulic jumps but
achieve a final steady state, and (2) where stability can be proven for cases involving unsteady hydraulic jumps,
assuming RAS modelling is still valid for the scales being solved and some lenience in the turbulence scales. In
the following sections, two grid convergence studies will be devised using two different flow archetypes.

6Understood as difficulty of the linear solvers to reach convergence.
7Even that theoretical maximum is never achieved in practice, given the first‐order‐in‐time nature of PISO.
8Although it clearly is not monotonic, by looking the GCI.
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3.1.1 Grid Convergence Study: trivial archetype

The previous section delineated the reasons a convergence study, using the hydraulic jump as basis, may prove
complex for analysing the goodness (stability, monotonicity) of a turbulence model. Remember that is difficult
to distinguish physical, numerical, from spurious oscillations in physically unsteady cases, particularly as the
grid becomes finer. However, this does not preclude the possibility of conducting a grid refinement study on
a simpler archetype, that is, an archetype that exhibits features similar to those of the hydraulic jump but
reaches a stationary, or trivial, solution as 𝑡 → ∞. The solution must only exhibit features common to the
hydraulic jump in the transient phase, though.

Figure 4 – Dam break simulation at 𝑇 = 0.5 s.

A perfect candidate is the dam break case, given its simplicity and familiarity amongst FOAM users. The case
geometry is taken from the standard tutorials of FOAM while the settings, turbulence model, and solver, are
as described previously. However, the grid spacing is set to uniform and the initial spacing is Δ𝑥 = 11.68 mm.

The transient phase of the dam break case is shown in Figure 4, which exhibits wave‐breaking and air‐water
entrainment, and as time passes the solution becomes fully stationary (quiescent liquid). At the end of the
simulations, different metrics may be taken on the quasi‐stationary solution and the order of convergence
studied.

The L2‐Norm of quantities representative of the different equations being solved, such as pressure or velocity
for the predictor‐corrector algorithm, and the residual viscosity for the turbulence models, represents a useful
metric for the present analysis. The L1‐Norm9, on the other hand, of the volume‐fraction scalar is represent‐
ative of both mass‐conservation and convergence of the color equation.

As a reminder, the L2‐Norm of a quantity 𝑣 may be determined in the following way:

||𝑣||L2 = (∫
Ω

𝑣2 𝑑Ω)
1/2

,

where Ω is a domain in ℝ𝑛. Additionally, the order of convergence 𝑝 for successively refined grids (labelled 1,
2, and 3) with a constant refinement ratio 𝑟 may be determined in the following way:

𝑝 = ln(𝑓3 − 𝑓2
𝑓2 − 𝑓1

) / ln 𝑟, (19)

where 𝑓 is some metric used to evaluate the order of convergence, in this case the L2‐Norm.

The results for the grid convergence analysis using the dam break case on 3 successively refined orthonormal
grids with 𝑟 = 2 are presented in Table 2. Based on the linearization practices suggested in Listings 2.1 for

9or volume integral
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Table 2 – Grid convergence analysis for 𝑟 = 2 using the dam break case.

Grid Label Mass‐conservation (𝛼) Momentum (||u||𝐿2 × 10−5) Turbulence (𝜈𝑡 × 10−6)
1 0.0762817 14.4830 4.57505
2 0.0847463 10.1360 3.84557
3 0.106473 8.6851 2.21182
𝑝 1.3599 1.5830 1.1700

𝜃

(a)

(b)

Figure 5 – Classic hydraulic jump downstream of a slope with angle 𝜃: (a) sketch of the problem, (b) numerical domain.

the different spatial and temporal operators, it seems only logical to obtain different convergence orders for
the different equations being solved. Note that the assumed convergence order of the time operator is loc‐
ally second‐order, whereas for the gradient operator is strictly second‐order accurate, and for the rest of the
operators it lies in between.

The lowest convergence order is obtained for the turbulence model, which is expected, given the upwinded
schemes therein used for the divergence operators plus the deferred‐correction treatment of the non‐linear
coupling production terms present in Equations 8 and 9. On the other hand, the highest rate of convergence
is obtained for the PISO algorithm, where the time operator and the deferred treatment of the non‐linear
convective term in PISO lower the convergence of the momentum.

3.1.2 Grid Convergence Study: second archetype

The previous section showed that the proposed algorithms convergemonotonically for inherently steady solu‐
tions which, during the transient phase, exhibit features similar to those of a hydraulic jump. The next step
is to test whether ensemble‐averaged solutions from transient snapshots calculated for successively refined
grids also converge monotonically. In this case, a classical hydraulic jump on a wide channel is proposed as an
archetype for the grid convergence study.

Monotonic convergence of ensemble‐averaged (U)RAS solutions present some challenges, particularly when
the underlying flow is inherently unsteady. On one side, excessive mesh refinement may lead to the over‐
resolution of unsteady inertial features that may produce excessive dissipation on the turbulence model and
produce the switch between different wall‐model behaviour as the 𝑦+ approaches unity. On the other end, a
too coarse grid may introduce also excessive dissipation via artificial viscosity andmay not be able to represent
important inertial features of the flow. In the particular case of a hydraulic jump one may want a grid fine
enough to be able to accurately represent the incoming high‐Froude supercritical flow, but yet coarse enough
so to guarantee the wall models do not switch behaviour during the refinement stages or to avoid the first
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off‐wall centroid falling into the buffer zone 11 < 𝑦+ < 100. Furthermore, it is important also to avoid large
cell aspect ratios when using VoF solvers as the compressive term in the color equation may tend to “stretch”
the water body during splashing and wave breaking.

Table 3 – Grid convergence analysis for 𝑟 = 2 using the hydraulic jump case. A 4th refinement step is done, but not used for the
calculation of 𝑝. Notice that the metrics for the 4th refinement are not monotonic anymore.

Grid Label Mass‐conservation (𝛼) Momentum (||u||𝐿2) Turbulence (𝜈𝑡 × 10−5)
1 2.67634 2.13260 1.02503
2 2.77605 2.47026 1.20674
3 2.81602 2.59601 1.28919
4 2.88517 2.46830 0.41270
𝑝 1.319 1.425 1.145

The mesh spacing was chosen to be uniform in all directions, but not equal, that is, an aspect ratio bigger than
unity was set. In the direction parallel to gravity, the vertical mesh spacing for the coarsest grid was set to
be Δ𝑦 = 10 mm assuming that the incoming supercritical flow is F = 8 and water depth is 𝑦 = 60 mm. An
aspect ratio of 10was chosen for the spanwise and streamwise directions. The viscosity of waterwas artificially
reduced to 1 × 10−10 in order to guarantee the wall models to “stay” in the high‐Reynolds regime as the mesh
is refined. A sketch of the domain is shown in Figure 5, where the slope of the channel is set to 𝜃 = 𝜋/36. The
slope before the jump is needed in order to enforce a fully developed flow before the hydraulic jump in the
flat channel.

Results of the grid convergence study are shown in Table 3, on three successively refined grids. Note that the
order of convergence for the different ensemble‐averaged quantities resemble those of the previous study
where momentum ranked the highest order of convergence and the turbulence model ranked the lowest. The
grid labelled “2” (first refinement) shows good quality metrics, not so different from the ones used for the fine
grid (labelled “3”). The mesh spacings for case 2 will be used as basis for the rest of this work.

Non‐monotonicity in the solution arises once the grid is refined for a fourth time, where the minimum grid
dimension becomes Δ𝑦very fine = 5/8 mm and the maximum shear depth in the sloped channel is 𝑦+ ≈ 87.
As explained before, many factors contribute to such behaviour: (1) over‐resolution10 of unsteady features, (2)
mis‐behaviour of wall‐models, and (3) degradation of grid quality.

3.2 Validation using A‐type (or classical) hydraulic jumps

The previous section dealt with stability and convergence of the code used within FH for the simulation of
two‐phase flows in general settings. There, it was shown that the present turbulence model and algorithms
produce monotonic results as the grid becomes finer, within limits. However, the question of accuracy has not
been addressed yet.

This section will then examine numerical results of classical hydraulic jumps after inclined slopes, or A‐type
jumps (Ohtsu and Yasuda, 1991), on a geometry as shown in Figure 5. Note that the present case allows for
the verification of quantities before and after the hydraulic jump, based on one‐dimensional descriptions, and
permits a tighter control on the parameters defining the hydraulic jump’s behaviour.

The flow conditions and mesh constraints chosen for the present problem are shown in Table 4. Note that
the channel is prismatic and rectangular in shape, and the mesh is refined close to the walls to a minimum
of 5 mm, according to what was found in previous sections. In this case a back‐calculated roughness for the
channel is determined, which enforces the Froude Number described by assuming the supercritical flow in
the slope is uniform, following Equation 21 (details given in the following section); such Froude number should

10Resolution of dissipative scales which, in principle, are being fully modelled by RAS
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Table 4 – Case study conditions for the sloped channel.

Value
F1 4.08
𝑞inlet 332 l/s/m
𝜅 1.0 mm
Channel Width wide
𝜌𝐻2𝑂 998.1 kg/𝑚3

𝜈𝐻2𝑂 1.02 × 10−6 𝑚2/s
Δ 𝑦 (min) 5 mm
Δ 𝑦 (max) 20 mm
𝜃 𝜋/36

guarantee a stable jump (F = 4.85 > 4.5). The slope of the channel is chosen to be steep enough to guarantee
S3‐type flow (steep), in a range where the basic relations of hydraulics are still valid. The flow at the domain’s
inlet is set uniform with direction parallel to the bed, and the water depth is set 20% higher than the uniform
supercritical depth and let develop as it pours down the slope. It is expected that the flow develops fully
before the hydraulic jump. The results herein showed correspond to those with an “open” boundary condition
at the outlet. However, setting either a Dirichlet condition or an “open” boundary condition for velocities at
the outlet shown no discernible difference in the results (see Figure 2); however, it is worth mentioning that
the latter led to somewhat longer execution times.

3.2.1 Fully developed inflow: verification of the stresses

Here, one may derive simple (and exact) relations for the shear stress for the sloped channel and compare
such relation with numerical calculations in order to validate the latter. It is clear that with the validations of
the wall shear stresses one proves that: (1) the turbulence wall model behaves correctly for uniform flows, but
also (2) that the flow is indeed fully developed before the jump.

As previously mentioned, an exact relation for the wall shear stresses given the wall roughness and the up‐
stream, uniform, Froude number can be derived. This is possible becausewhen the flow is uniformon a sloping
channel, the overall wall stress between two sectionsMUST balance the longitudinal weight component of wa‐
ter contained between these sections at all times. The wall shear stress for a wide rectangular channel is then
expressed in the following way:

𝜏wall = 𝛾𝐻2𝑂 𝑦𝑛𝑆0, (20)

where 𝛾𝐻2𝑂, 𝑦𝑛, and 𝑆0, are the specific weight of water, normal depth, and channel’s slope, respectively. By
virtue of the Darcy‐Weisbach definition, an exact relation between the friction coefficient 𝑓 = 𝑓(𝜅,R) on a
channel and its respective stress can be determined,

𝜏wall =
𝜌𝐻2𝑂𝑓𝑉 2

8 , (21)

and used to calculate, say, an appropriate wall roughness 𝜅 according to the desired upstream Froude number
(i.e. water depth). Thus, repeated iterations of Eqn. 20, Eqn. 21, with an appropriate expression for 𝑓 =
𝑓(𝜅,R), may give the roughness of the upstream channel as function of the discharge and desiredwater depth.
In fact, the Froude Number and corresponding roughness11 presented in Table 4 were estimated that way.

Here, the assumption of low uniformity in the supercritical stretch of the channel flow must be verified in the
numerical calculations along with the cross‐section‐integrated shear stress along the channel. To that end, a

11The Colebrook‐White equation for 𝑓 was used in this work.
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Figure 6 – Time‐averaged 1‐D profile of cross‐section‐integrated bottom shear stress for the sloped section of the channel,
normalized using the hydraulic jump height ℎ𝑗.

one‐dimensional time‐averaged profile of the shear stresses along the sloped channel is extracted from the
simulations, as shown in Figure 6. There, the relation 𝜏∗ = (𝜏wall/𝜏CFD

wall ) is used to compare the exact solution
given by Equation 20 with the stress calculated by the simulations, 𝜏CFD

wall . It is clear from the figure that the
flow reaches uniformity at around 𝑥/ℎ𝑗 ≈ 25, close to the toe of the slope. Since the hydraulic jump occurs
just after the toe and flow decelerates as a consequence of the slope change then deviations from unity are
expected just before the toe of the slope.

A verification of the velocity profiles against literature data at the point where the flow becomes uniform
may offer further insight on whether the turbulence model and associated rough‐wall models are working as
expected. Figure 7 shows the velocity profile for the fully‐developed flow in the supercritical region in the
sloped channel. There, the law of the wall for rough surfaces according to Aupoix and Spalart, 2003 is used for
comparison:

𝑢+ = 1
𝑘 [log 𝑦+ − log(1 − 𝜅+

exp (3.25𝑘))] + 5.0,

where 𝑘 ≈ 0.41, and where the plus superscript denotes viscous normalization of the otherwise dimensional
variables. The numerical results exhibited in the previous figure show a slope somewhat steeper than it is
expected but the results are, generally speaking, in good agreement with the law of the wall. However, the
effect of the lateral walls and flow confinement may be a contributing factor to the change in slope seen in the
velocity profile as it has been shown to be the case for one‐phase LES of flows in square ducts (Madabhushi
and Vanka, 1991).

It is nonetheless important to mention that, unlike the present work, flow uniformity before the jump is rarely
discussed in literature regarding the simulation of hydraulic jumps within RAS. The reason being that these
studies only consider the flat section of the channel, where no exact relation can be derived for the wall shear
stresses under flow uniformity arguments.
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Figure 7 – Velocity profile of the fully developed supercritical flow in the sloped channel for the outer layer (R > 1000), presented in
viscous units.

3.2.2 Volume‐of‐Fluid verification: shape of the hydraulic jump

In previous sections a validation of the velocity field and shear stresses obtained in the supercritical section
of the channel was performed, from the basis that the accurate representation of these fields against 1‐D
descriptors will validate the turbulence and wall model for its use in two‐phase supercritical flows. There,
indirectly, Equation 2was also verified: the balance of stresses as presented in Equation 20 cannot yield correct
results numerically if theweight of the fluid (i.e. water depth) is not accurately represented for an uniformflow.
In fact, a fast verification of the water depth at 𝑥/𝑦1 ≈ 80 yields a Froude number equal to F1 = 4.09, which
is quite similar to what is assumed in Table 4.

Figure 8 – Visual inspection of the hydraulic jump’s roller length via surface flow patterns using the time‐space averaged velocity field.

This section will follow the same logic for the validation of the color equation (Eqn. 2) but for the region com‐
prising the hydraulic jump, that is, the section that begins at the toe of the jump until the end of the surface
roller. The water surface profile in the aforementioned transect is depicted in Figure 9, where the horizontal
and vertical scales are normalized using the roller length, 𝐿𝑟, and the hydraulic jump height, ℎ𝑗 (refer to Fig‐
ure 19 for the notation). The length of the roller can be roughly estimated by inspecting Figure 8, which leads
to a length of approximately 𝐿𝑟 = 2.6 𝑚 measured from the toe of the jump (𝑥 ≈ 5.0 𝑚) until where all the
flow vectors more or less follow the main path of the flow (𝑥 ≈ 7.6 𝑚). Note that the use of the following
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Figure 9 – Normalized shape of the hydraulic jump.

formula,

𝐿𝑟 = 220𝑦1 arctan
F1 − 1

22 , (22)

for the present case gives a theoretical 𝐿𝑟 ≈ 2.70 m, which is not so different from the aforementioned
measurement.

The results obtained from the simulations match quite closely with the experimental studies of Bakhmeteff
and Matzke, 1936. More recent studies accounting for bubble dynamics (Wang and Chanson, 2016) show a
steeper increase in the water surface profile compared to the present study.

3.2.3 Dynamics of the flow within the hydraulic jump

The internal flow and turbulence characteristics of several types of hydraulic jumps have been studied for
decades now (Bakhmeteff and Matzke, 1936; Hornung et al., 1995; McCorquodale and Khalifa, 1983; Ohtsu
and Yasuda, 1991; Peterka, 1964; Rouse et al., 1959). In particular, the work of McCorquodale and Khalifa,
1983 and the classical studies of Rajaratnam and Subramanya, 1968 can be used to validate the velocity fields
and its decay along a hydraulic jump, in a RAS sense.

All the information regarding the internal flow dynamics of a hydraulic jump is condensed in Figure 10. The
flow jet that forms underneath the surface roller in a hydraulic jump shares similarities with a classical non‐
buoyant jet flow (Rajaratnam and Subramanya, 1968; Wu and Rajaratnam, 1995); one may then express the
maximum velocity decay in the following way:

𝑈max

𝑢1
= 1.173 − 0.843 𝑥

𝐿 + 0.174 ( 𝑥
𝐿)

2
,

where 𝑢1 is the mean velocity of the incoming supercritical flow, and 𝐿 is the length where the maximum
velocity reduces to half of 𝑢1. It is clear that the aforementioned decay is modulated by the action of the
surface roller, that is, an accurate modelling of the physics of the roller should lead also to a good prediction of
the velocity decay. It should be noted then that the results in Figure 10‐a indicate a good agreement between
the decay for wall‐jets and the predicted decay for A‐type, or classical, hydraulic jumps. This, indirectly, also
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(a)

(b)

Figure 10 – Internal flow characteristics of the A‐type hydraulic jump for R𝜏 ≈ 17000 and F = 4.68. (a) Maximum velocity decay
along the axis of the jump, and (b) vertical profiles of velocity at different locations along the axis.
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Figure 11 – Various experiments relating the roller length to the Froude number, conducted by various research groups (Peterka,
1964)

indicates that the algorithms herein proposed are satisfactory for the resolution of the surface roller within
the context of RAS.

Moreover, the vertical profiles of velocity within the jump show fair agreement with the model of McCor‐
quodale and Khalifa, 1983 in the region comprising the core of the roller (14 < 𝑥/𝑦1 < 32). In general, the
profiles match quite good with respect to Equation 13 for 𝑦/𝛿 < 1, but then some of the profiles outside of
the core of the roller tend to have larger discrepancies from Equation 14. However, the overall trend of the
wall‐jet and surface recirculation are present on every single profile, discarding any spurious behaviour that
may arise due to over‐dissipation or incorrect simulation setup12. It is important to mention that other studies
relating both numerical and experimental work have shown similar trends and discrepancies with respect to
otherwise self‐similar velocity profiles (Jesudhas et al., 2018; Macián‐Pérez et al., 2020; Mortazavi et al., 2014;
Wang and Chanson, 2016). In fact, the DNS results presented in Figure 24 show non‐similarity of the profiles
for oscillating jumps.

3.2.4 How validate the surface roller length, 𝐿𝑟?

The exact definitionof hydraulic jump’s length, or roller length, was a subject of debate for quite sometime (Peterka,
1964) and still is. Even in the case where the same scaling laws and parameters are used, different (reputable)
research groups have come up with quite different results for the determination of the surface roller length, as
it can be seen in Figure 11. Clearly, in engineering design one may strive to work with the most conservative
of results when given various options hence the nature of the suggestion (“Recommended” line) put therein.
The reasons for such differences lie both in the way how the data is scaled (with the sequent depth, instead of
the more natural antecedent depth) and how the boundary of the roller is defined during visual inspection.

In thiswork, and numerical experiments in general, one can opt for amathematical approach for the estimation
of 𝐿𝑟 by defining precisely where the shear region between the surface roller and the wall‐jet lies. In previous

12Behaviour such as bottom recirculations due to flow separation, and such.
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Figure 12 – Surface flow patterns for a B‐type jump.

chapters by defining the so‐called von Karman Length, 𝐿𝑣𝑘, in a way suitable for the modelling of hydraulic
jumps, a means of educing sheared region was also implied. In general, one may assume that 1/𝐿𝑣𝑘(𝑈) =
0 represents the boundary between the roller and the wall‐jet, as expressed in Equation 17. This metric,
although mathematically sound, is quite complex to verify in engineering practice, and to measure or educe
in experimental settings, thus it serves no use for the purposes of measuring 𝐿𝑟. Instead, the Author followed
an approach similar to that used by several researchers in the experimental camp: visual inspection of flow
streamlines.

However, by revisiting some of the already presented results one may notice that by accurately representing
thewater surface profile of the hydraulic jumpusing𝐿𝑟 as scaling factor it also implies that𝐿𝑟 itself is accurately
defined in view of both the experimental and numerical values already shown in Figure 9.

3.3 Validation using B‐type hydraulic jumps

Here, a validation similar to the one conducted in the previous section will be done. The difference here lies
in the location of the hydraulic jump’s roller: referring to Figure 5 it will be assumed that the roller region is
partly on the slope, that is, further upstream from the previous scenario (A‐type).

More specifically, a simulation was set‐up using similar parameters described in Table 4, except for the down‐
stream water level where 0.65 cm was set in order to produce a B‐Type jump. Note that the supercritical flow
on the slope may not be fully developed when it plunges the downstream pool. The present scenario is inter‐
esting for the following reasons: (1) the flow deceleration seen towards the toe of the slope will occur within
the wall‐jet in this case which may enhance the roller and affect the maximum velocities inside the jet, (2) as
a consequence, the roller region will be enhanced, and (3) the effects of a non‐fully developed incoming flow
can be analysed.

In previous chapters, it was mentioned that flow decelerations may produce flow separation, even in hydraulic
jumps given some conditions. There it was shown that flow separation in hydraulic jumps was more likely to
happen in weak (or oscillatory), or drowned, jumps where decelerations are important. On the other hand,
although sources of flow decelerations other than the roller exist for B‐type jumps, there is no record of flow
separation in the experimental studies revised in the present work (Ohtsu and Yasuda, 1991). Note that in the
aforementioned study the experiments were conducted for stable jumps. Therefore a physically accurate CFD
code should not exhibit secondary rollers (due to flow separation) at least for stable jumps (F > 4.5).
A first inspection of the flow patterns obtained for the present simulation indicates no spurious flow features
or separation of any kind, as depicted in Figure 12. The supercritical flow upstream reaches a minimum depth
equivalent to F = 4.16, and the length of the roller may be estimated to be 𝐿𝑟 = 2.2 m.
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Figure 13 – Normalized shape of the B‐Type hydraulic jump.

3.3.1 Shape of the B‐type hydraulic jump

As mentioned earlier, the present simulation has a Froude number somewhat less than the simulation of the
A‐type jump discussed in the previous section. However, the shape of the hydraulic jump depicted in Figure 13
matches well with recent experiments conducted for similar Froude numbers (Wang and Chanson, 2016).

Clearly, the normalization of the hydraulic jump’s profile is modulated by 𝐿𝑟. Note that the use of Equation 22
gives a 𝐿𝑟 ≈ 1.50 m which shows that the length of the roller for B‐Type jumps becomes larger compared to
classical jumps. Previous studies (Ohtsu and Yasuda, 1991) have suggested B‐Type jumps may have somewhat
longer roller regions compared to classical hydraulic jumps. This follows from the fact that the flow jet beneath
the roller accelerates downstream of the toe, producing a larger sheared region as a consequence.

3.3.2 Internal flow mechanism of the B‐Type jump

As done in previous section, an analysis of the internal flow features of the B‐Type jump is conducted and
presented in Figure 14‐a and Figure 14‐b. The former shows the velocity decay for the present case which,
when compared to the results for the A‐Type jump, show a stronger decay as one moves downstream in the
Figure. It wasmentioned previously that larger accelerations in the jet flow downstream of the toe of the slope
may produce longer rollers which, given their increased energy, produce larger dissipation in the shear region
shared with the jet underneath conducing to larger decay. Note that larger differences in velocity decay occur
after the toe of the slope. Such assertion is also made by Ohtsu and Yasuda, 1991 and confirmed with the
experiments conducted therein.

The velocity profiles within the hydraulic jump indicate a stronger roller region for the first 𝑥/𝑦1 ≈ 10 units,
as seen in Figure 14‐b. These profiles approach asymptotically the theoretical profiles of (McCorquodale and
Khalifa, 1983) as 𝑦/𝛿 ⟶ ∞ and exhibit stronger gradients in the outer region 𝑦/𝛿 > 2 giving indication that
the coefficient modulating the slope in Equation 14; however, the velocity profiles change quite sharply for
𝑥/𝑦1 > 13, showing weaker gradients in the outer region. Such assertion goes hand‐in‐hand with the analysis
presented previously about the velocity decay: enhanced dissipation after the toe of the slope produce a larger
decay of the velocities. Finally, in none of the profiles spurious separation or recirculation are present in the
inner region of the velocity profile.
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(a)

(b)

Figure 14 – Internal flow characteristics of the B‐Type hydraulic jump for R𝜏 ≈ 16500 and F = 4.68. (a) Maximum velocity decay
along the axis of the jump, and (b) vertical profiles of velocity at different locations along the axis.

Final version WL2024R20_035_2 25



On the numerical resolution of hydraulic jumps:
Algorithms, Boundary Conditions, and Turbulence Models

(b)

(b)

Figure 15 – (a) Normalized shape of the hydraulic jump and (b) Surface streamlines for the B‐type jump in a steep slope.

3.4 Further insights using B‐type hydraulic jumps on steep slopes

The previous sections have successfully shown the validity of the present turbulence model and numerical
algorithms for the solution of two‐phase flows for the study of different types of hydraulic jumps on flat and
mild slopes. Here the numerical simulation of a B‐Type hydraulic jump as described in Table 4 is conducted,
with the only difference that the slope in the oncoming channel is increased to 𝜃 = 17∘. Note that the Froude
number just before the hydraulic jump increases sharply in this case, F = 7.51, due to the abrupt change of
slope.

By increasing the slope of the channel to 𝜃 = 17∘, some of the basic assumptions in classical hydraulics start to
break down: balance of momenta along the axis of the channel must consider the weight of the fluid and cor‐
rections need to be made to the kinetic and potential energy terms in the Bernoulli equation. Even with such
improvements, local accelerations product of slope changes are critical yet unresolved in unidimensional hy‐
draulics. Experiments conducted by Ohtsu and Yasuda, 1991 indicate the existence of such sharp accelerations
exactly at the toe of a steep slope with a flat channel.

An example of such differences is in the shape of the hydraulic jump’s profile before and after the toe of the
slope as depicted in Figure 15‐a, concomitant with the previous simulations. There, the length of the hydraulic
jump is measured from the surface streamlines shown in Figure 15‐b, which gives 𝐿𝑟 = 3.6 m. Note that
Equation 22 reports a significantly lower value for the length of the roller (𝐿𝑟 ≈ 2.0 m). A change in the
character of the flow is noticeable in the free surface profile, due to the substantial size of the roller. This
variationmust then be reflected in the internal flow behaviour in the hydraulic jump itself, that is, the increase
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of the size of the roller (which drives the hydraulic dissipationwithin the hydraulic jump) must be consequence
of internal accelerations that must be dissipated.

3.4.1 Internal flow character of the B‐Type jump in steep slopes

Variations of the free‐surface profilewith experimental datawere attributed to local accelerations that occur in
the change of slope present in the geometry herein studied. As previously mentioned in other studies (Ohtsu
and Yasuda, 1991) the so‐called hydraulic dissipation, expressed in the velocity decay profiles shown in Fig‐
ure 16‐a, show a different character before and after the toe of the slope for B‐Type jumps in sloped channels.
Note in the figure that a jump in the velocity is present exactly where the toe of the slope is located, indicat‐
ing that: (1) velocity decay behaves similarly to B‐Type jumps in mild slopes, and (2) the sudden acceleration
enhances the surface roller and produces a larger slope of velocity decay downstream of the toe.

The velocity profiles depicted in Figure 16‐b also indicate a stronger shear region as most of the profiles for
𝑥/𝑦1 < 20 become asymptotic to the abscissa for 𝑦/𝛿 > 6. However, for 𝑥/𝑦1 > 20 the velocity profiles in the
outer layer tend to approach the relative maximum velocity 𝑢/𝑢max faster, compared to previously depicted
results.
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(a)

(b)

Figure 16 – Internal flow characteristics of the B‐Type hydraulic jump for F = 7.51. (a) Maximum velocity decay along the axis of the
jump, and (b) vertical profiles of velocity at different locations along the axis.
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4 Discussion

The present work deals with the validation and verification of proposed turbulence models and simplifications
of the governing equations of fluid flows according to the requirements of hydraulicians. The chosen archetype
for the present campaign is the hydraulic jump, focusing on two scenarios: (1) a classical hydraulic jumpon aflat
bed, and (2) a B‐Type hydraulic jump on a sloped channel. The first scenario is for which most of experimental
and numerical studies have been dedicated to in the field of hydraulics, hence there is plenty of literature that
serves the purposes of the present study. The second scenario is chosen because of its dissipative properties:
of all types of hydraulic jumps, B‐Type jumps are preferred because these produce themaximumvelocity decay
(or so‐called dissipation, as intended by hydraulicians) for the same incoming Froude number.

The nature of the surface roller and dissipation therein for B‐Type jumps is function of the slope of the incoming
channel. The results pertaining steep slopes reproduce what has been hypothesized and studied in previous
works regarding the character of hydraulic dissipation (or velocity decay) within B‐Type jumps in steep slopes,
as sketched in Figure 17, that is, the change in character in the velocity decay before and after the toe of the
slope. Unfortunately, there is not toomuch experimental literature about the internal flow structure of B‐Type
jumps in steep channels, except for the literature used in this work.

The numerical results herein presented show overall agreement with selected literature data, for stable hy‐
draulic jumps. Spurious secondary currents and flow separationoften seen in other CFD results are not present,
and the solutions exhibit no influence from boundary conditions or of the simplifications conducted to the gov‐
erning equations. Furthermore, the present verification shows that the proposed turbulence model is robust
and gives satisfactory results, as well as the code itself.

Although not studied in the present numerical campaigns, the onset of separation cannot be considered al‐
ways as spurious when seen in numerical simulations of hydraulic jumps. Different numerical studies and
one‐dimensional analysis under the lens of classical mechanics offer insight about the feasibility of separation
under some specific circumstances, regarding hydraulic jumps. It was noted that the onset of flow separation
is more likely in, say, drowned jumps, and oscillatory‐to‐weak jumps.

4.1 Future work

Given the satisfactory results obtained from themethodologies implemented herein, the next step is to further
focus on numerical campaigns aimed into resolving features for weak‐to‐oscillatory jumps, and of stable jumps
in sloped channels. Special emphasis on the location of the toe of the jump and of its length will be given, and
comparisons will be made with literature data and experiments.
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Figure 17 – Acceleration zone as theorized by Ohtsu and Yasuda, 1991.
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A1 Theoretical Considerations

(…) various aspects of the hydraulic jump,
long subject to conjecture or misunderstanding,

are thereby clarified.

– Hunter Rouse (1959)

This chapter will be devoted to discuss some generalities about hydraulic jumps, within the context of compu‐
tational mechanics, physics, and engineering. The attempt here is to bring to the discussion the non‐similar
behaviour of hydraulic jumps, including flow separation, which, to some degree, is unbeknownst to some en‐
gineering practitioners. More precisely this chapter will attempt to find a common ground on why separation
may occur in hydraulic jumps on certain circumstances, and for that it is necessary to re‐visit the problem using
first principles and high‐resolution data (DNS or Experimental Fluid Dynamics (EFD)) produced elsewhere.

A1.1 Theory, research, and practice of hydraulic jumps

A substantial amount of peer‐reviewed articles have been (and continue to be) published on the subject of
hydraulic jumps using CFD13. Said articles range from fundamental physics of hydraulic jumps (Jesudhas et
al., 2018; Mortazavi et al., 2014; Witt et al., 2018), verification and validation of CFD codes (Macián‐Pérez
et al., 2020; Mukha et al., 2020), to engineering applications under the context of eco‐hydraulics. However,
the fundamental physics of hydraulic jumps are well known since the 1960’s (Rouse et al., 1959). For the
purposes of this report, just some salient results from previous research will be mentioned and some basic
theory revisited.

(a) Undular jump. (b) Weak jump.

(c) Oscillating jump. (d) Steady jump.

Figure 18 – Hydraulic jump classification according to the Froude number.

The most important aspect of hydraulic jumps is its character, or so‐called type, according to the Froude num‐
ber of the upstream flow, as shown in Figure 18. Up to date, a large body of literature has been devoted

13A simple Google Scholar search of the keywords ’hydraulic jump´ and ’CFD´ suggests a total of 11200 articles in the last 10 years
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to the study of hydraulic jumps focusing on its features like energy dissipation, roller length, velocity field,
and more recently aeration and bulking14, across all types, dealing with varying degrees of challenges. On
the other hand, note that most of the literature regarding DNS/LES of hydraulic jumps involves oscillating and
weak hydraulic jumps given the high computational demand required to accurately resolve the jump’s features
at higher Froude numbers. Thus, steady hydraulic jumps are only currently being studied via Detached Eddy
Simulations (DES), and for jumps with higher incoming Froude numbers the research focus is on the accur‐
ate modelling of flow bulking and air entrainment via population models and the sub‐grid scale modelling of
bubble coalescence/breakup and turbulence therein. The present review will not focus on the latter line of
research.

Figure 19 – Dimensionless surface profiles of hydraulic jumps in horizontal channels, taken from Peterka, 1964. Experiments were
conducted originally by Rajaratnam and Subramanya, 1968.

In engineering practice all types of hydraulic jumps are assumed self‐similar, that is, all families of hydraulic
jump types collapse into a single representation which scale with the Froude Number. For detailed studies
using high‐resolution PTV or simulations, this is not the case (Wang and Chanson, 2016): (1) flow patterns,
such as the surface roller or turbulence kinetic energy, are not self‐similar across hydraulic jump types, and (2)
air‐water flow characteristics, such as air entrainment or jump length, cannot be correctly quantified at scale.
This can be inferred by simply observing the non‐dimensional jump profiles of Rajaratnam and Subramanya,
1968, shown in Figure 19, which do not collapse onto a single profile under varying Froude numbers.

On the other hand, the aforementioned assumption, although apparently incorrect, proves useful for the study
of hydraulic jumps by means of two dimensional mass, momentum, and energy conservation under the as‐
sumption of irrotationality (Bakhmeteff and Matzke, 1936). A graphical representation of the characteristic
equations used for the design of structures using hydraulic jumps (e.g. Stilling basins) in classical hydraulics is
shown in Figure 20. These curves are prepared for the specific energy (E), the water heights before and after
the hydraulic jump (𝑦1 and 𝑦2), for different upstream Froude numbers (F1), based on the generalized Bernoulli
equation15. Notice that self‐similarity from these equations cannot be assessed since for their derivation, it
is assumed that the hydraulic jump represents a discontinuity in energy, and therefore, in the water surface
profiles.

However the fact that one dimensional variations of energy and derived quantities thereof cannot be proven
(or disproven) self‐similar for a hydraulic jump, this doesn’t imply that self‐similarity can be disproven to more
complete descriptions based on the governing equations of fluid flow. In other words, self‐similarity in energy

14Bulking is the process whereby a supercritical flow on a hydraulically steep channel undergoes the formation of an air‐water mix
boundary layer starting from the free surface down to the bottom of the channel, increasing the depth of the flow.

15Local, considers entropy and heat losses.
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Figure 20 – Characteristic curves of hydraulic jumps in horizontal rectangular channels (Peterka, 1964). The sub‐indices 1 and 2 refer
to locations upstream and downstream from the jump, respectively.

Figure 21 – Contours of (a)‐(c) mean streamwise velocity and (b)‐(d) Reynolds shear stress of hydraulic jumps over flat beds, from an
instantaneous snapshot produced by numerical simulations. Plots (a)‐(b) correspond to an oscillating jump while plots (c)‐(d)

correspond to a stable hydraulic jump. Taken from Jesudhas et al., 2018.

does not translate directly to symmetry in the momentum equation because, for incompressible flows, con‐
servation of energy and momentum are independent from each other. This can easily be inferred from the
specific energy equation for a streamline:

𝐸𝑖 = 𝑦𝑖 + 𝛼𝑢2
𝑖

2𝑔 ,

where no coupling with the governing equations of fluid flow is needed to obtain the local energy at a certain
point.

To restate, it is not said that self‐similarity in energy (which reduces to the generalized Bernoulli equation) also
applies for fields calculated from themomentum equation: the experiments conducted by Peterka, 1964 show
excellent agreementwith Belangér’s equation (which is derived frommomentumand energy arguments); how‐
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ever, the Author make the remark that the flow transitions through different states (according to the location
of the toe of the jump), in connection with the hydraulic jump types shown in Figure 18, exhibit local non‐
similarity. This is also confirmed by the numerical experiments of Jesudhas et al., 2018 which also show local
non‐similarities in the surface roller of hydraulic jumps in the oscillating and stable regimes, as depicted in
Figure 21. Notice there that the surface roller is barely present in the oscillating regime whereas for a stable
hydraulic jump it is present. Finally, self‐similarity of the Reynolds stresses was shown not to hold for hydraulic
jumps in the DNS studies conducted by Mortazavi et al., 2014. This seemingly counter‐intuitive behaviour of
oscillating and weak hydraulic jumps, exhibiting weak rollers and non‐similarity, may be unknown to some
practitioners when confronted with high‐resolution data.

Figure 22 – Length in terms of sequent depth 𝑦2 in horizontal channels. Notice that the suggested range for design is 4.5 < F1 < 9.
Taken from Peterka, 1964.

The experiments conducted by Peterka, 1964 and references therein should be considered a complete com‐
pendium of the hydraulics of hydraulic jumps, that is, what a practitioner needs to know about hydraulic
jumps in order to build structures around dams and rapids. In such cases, the engineer is usually confron‐
ted with stable hydraulic jumps types (F1 > 4.5) which, for the most part, are very well understood and even
highly suggested‐ to be used during design stages (see Figure 22). Very seldom is the engineer required (or
interested) to work with varied flows where the Froude number approaches unity or with weak‐to‐oscillating
jumps (F1 < 4), except in hydraulic controls; in fact, many reference texts discourage the design of channels
with varied flows that range between 0.8 < F < 1.5, given the oscillatory behaviour of around‐to‐critical
flows. Furthermore, the desirable energy dissipation and turbulence mixing properties of hydraulic jumps are
better used for incoming flows with high Froude numbers.

A1.2 Onset of flow separation in weak and oscillating hydraulic jumps: basics

The onset of flow separation on a flat plate (or channel for thatmatter) is predicated by adverse pressure gradi‐
ents or, broadly speaking, by flow decelerations along the direction of flow. In the case of free‐surface‐varying
open channel flows along horizontal channels, the following three scenarios might exhibit flow separation:

1. a sudden increase in the water height in the channel,

2. a sudden decrease in the water height in the channel,

3. and no water surface variation in the channel.

These need to be inspected in order to determine what conditions may trigger the onset of flow separation.
From the possible types of free‐surface flows happening in the aforementioned scenarios, only the ones where
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there is a net loss of specific energywill be considered. To that end, the second‐lawof Newtonmay comehandy
(neglect friction):

𝐷(𝜌u)
𝐷 𝑡 = ∑

𝑥,𝑦,𝑧
F ∶ (23)

∰ 𝜕(𝜌u)
𝜕 𝑡 𝑑Ω + ∯ 𝜌uu ⋅ 𝑑A = ∯ 𝑝 𝑑A + ∑

𝑥,𝑦,𝑧
Fexternal. (24)

From this Equation, any negative local acceleration resulting from the balance of forces around a control
volume suggests the onset of flow separation. Here, the only specific‐energy loss mechanism considered is
through variations in the channel’s cross section. For a constant discharge and subcritical flow, Equation 24
predicates decelerations (the first term on lhs of equation 24 becomes negative, given that the flow is bulking)
whenever themassic fluxes ofmomentumbecome less than the sumof the pressure forces at either end of the
control volume, that is, whenever the channel section widens and the water level increases. In this case the
seemingly unbalanced deceleration must be balanced by “internal” forces which come in the form of lateral
recirculations, as expected in channel expansions. On the other hand, a channel contraction in super‐critical
flows does not lead to adverse pressure gradients, or decelerations, despite the loss of inertia caused by the
contraction; this is because such deceleration is met by lateral external forces produced by the contracted
walls, included in the right‐hand side of Equation 24.

Finally for the third scenario one possible way to decelerate the flow along the direction of the flow is to have a
negative density gradient in the direction of the flow. Thismight happen in flows undergoing aeration. Another
possible way is when a drowned hydraulic jump occurs: water heights both before and after the jump may be
considered equal, andwhere the start and the length of the roller is imposed by the upstream and downstream
hydraulic controls, respectively. This implies that the longer, and weaker, the roller becomes (for example, by
increasing the downstream water level) it is more likely to have flow separation in view from Equation 24.

𝑊

𝜏

𝑦1

𝑦2

𝜌𝑄𝑉2
𝜌𝑄𝑉1

𝑝
𝑝

𝑦𝑐

Figure 23 – Control volume, delineated by the black dotted lines, indicating the forces acting on a hydraulic jump in the subcritical
region. Notice the upper dotted line represents the outer‐most streamline of the surface roller. The circle symbol denotes the end of

the surface roller, which enters in contact with the atmosphere.

Separation in a hydraulic jump may be approached in the same way as just done for a channel undergoing
contractions or expansions. In this case, however, a careful selection of the control volume may eliminate the
local acceleration derivative from Equation 24 but will require a description of the forces that otherwise will
be acting internally in the roller region. A sketch of the forces acting below the surface roller wedge is depicted
in Figure 23. A simple force balance in the direction of the flow following Equation 24 on the control volume
comprising the wedge, assuming that the shear region has a slope of approximately 1‐to‐6 (Rouse et al., 1959),
can be written as follows:

𝜏 𝐿 cos (𝜋/19) = 𝑊/ sin (𝜋/19) − ∯ 𝜌uu ⋅ 𝑑A + ∯ 𝑝 𝑑A, (25)
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where 𝐿 is the length of the domain. From the diagram, if a surface roller indeed exists, it is clear that the
rightmost two terms on the rhs of equation 25 (momentum fluxes and pressure forces) decelerate the flow by
virtue of:

1. the net flux of momentum being opposite to the direction of the flow (𝜌𝑄𝑉2 < 𝜌𝑄𝑉1),

2. and the net flux of pressure forces also being in the direction opposite to the flow.

This implies that, as long as the sum of net flux of momentum and the weight contribution is larger than the
net flux of pressure, 𝜏 remains positive (therefore a roller can be sustained). Notice that one may arrive to the
same conclusion were the sheared region produced by flow separation instead of a surface roller (in such case,
the wedge weight contribution wouldn’t exist). However, this is not the case for stable hydraulic jumps where
it seems energy dissipation via wave breaking (surface roller) is more efficient than local flow separation. In
general, one may conclude that the net deceleration produced by diverse fluxes at the boundaries of a control
volume within a hydraulic jump have to be met by an internal shearing force manifesting in a sort of roller, not
necessarily superficial.

It is clear, however, from previous discussions that oscillating‐to‐weak hydraulic jumps may or may not ex‐
hibit intermittent rollers, and flow streamline and free‐surface wiggling across the section of analysis. Said
intermittent surface rollers may form if the standing wave is strong enough to break, that is, to come onto
itself and form a breaking standing wave. If the standing wave doesn’t have sufficient energy to break, then
wiggly streamline patterns will follow. Notice that during these intermittent and “wiggly” patterns the curved
(wiggly) flow streamlines respond to a deceleration produced by locally unbalanced adverse pressure gradient
produced by the curvature of said streamlines. Finally, in the presence of negligible net momentum fluxes, the
aforementioned adverse pressure gradient can only be met by a shearing force produced by flow separation
(remember wave breaking is not possible, hence no surface roller).

A1.3 Onset of flow separation in weak and oscillating hydraulic jumps: empirical
and numerical evidence

The previous discussion laid the “conditions” whereby the onset of flow separation in the bottomof a hydraulic
jump may occur: (1) a weak surface roller, and (2) highly curved streamlines. Those two conditions are most
probably met in weak and oscillating hydraulic jumps. For the latter case, the high‐resolution numerical study
of Jesudhas et al., 2018 shows the occurrence of weak flow separation in oscillating jumps, as indicated by the
circled region in Figure 21‐a. Notice also there that the surface roller is barely present and the flow jet tends
to lift upwards with the free‐surface. Such lift‐off may induce radial accelerations that reduce the dynamic
pressure locally, unducing adverse pressure gradients. Additionally, direct numerical simulations of weak hy‐
draulic jumps (F1 = 2) confirm very weak time‐averaged surface rollers (Mortazavi et al., 2014; Mukha et al.,
2020) as shown in Figure 24‐a. The simulations of Mortazavi et al., 2014 also show that the time‐space aver‐
aged streamlines curve quite considerably after the toe of the jump for weak hydraulic jumps, as indicated in
Figure 24‐b. Such tilting is further proof of the reduced pressure distributions within weak and oscillating hy‐
draulic jumps. Note that the aforementioned DNS was conducted for a moving reference frame which implies
that the wall effects are missing from the solution, hence the onset of separation cannot be resolved there.
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(a)

(b)

Figure 24 – (a) Non‐dimensional streamwise time‐averaged velocity profiles after the toe of a hydraulic jump, located at 𝑥𝑡. The solid
line represents the velocity profile exactly at the toe, (𝑥 − 𝑥𝑓)/ℎ𝑗 = 0, and each subsequent line correspond to unit increments (1,

2, 3, …). The triangle symbol shows the location of the free‐surface and the arrow indicate the direction of unit increments. (b)
Surface streamlines for time‐ and spanwise‐averaged solution of a weak hydraulic jump. The field VF stands for volume‐fraction.

Taken from Mortazavi et al., 2014.
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